Metamath Proof Explorer


Theorem imass2

Description: Subset theorem for image. Exercise 22(a) of Enderton p. 53. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion imass2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssres2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )
2 rnss ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) → ran ( 𝐶𝐴 ) ⊆ ran ( 𝐶𝐵 ) )
3 1 2 syl ( 𝐴𝐵 → ran ( 𝐶𝐴 ) ⊆ ran ( 𝐶𝐵 ) )
4 df-ima ( 𝐶𝐴 ) = ran ( 𝐶𝐴 )
5 df-ima ( 𝐶𝐵 ) = ran ( 𝐶𝐵 )
6 3 4 5 3sstr4g ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )