Metamath Proof Explorer


Theorem imass2d

Description: Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis imass2d.1 ( 𝜑𝐴𝐵 )
Assertion imass2d ( 𝜑 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 imass2d.1 ( 𝜑𝐴𝐵 )
2 imass2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )
3 1 2 syl ( 𝜑 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )