Description: Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imass2d.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
Assertion | imass2d | ⊢ ( 𝜑 → ( 𝐶 “ 𝐴 ) ⊆ ( 𝐶 “ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2d.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | imass2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 “ 𝐴 ) ⊆ ( 𝐶 “ 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝐶 “ 𝐴 ) ⊆ ( 𝐶 “ 𝐵 ) ) |