Metamath Proof Explorer


Theorem imassca

Description: The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasbas.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasbas.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasbas.r ( 𝜑𝑅𝑍 )
imassca.g 𝐺 = ( Scalar ‘ 𝑅 )
Assertion imassca ( 𝜑𝐺 = ( Scalar ‘ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 imasbas.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasbas.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasbas.f ( 𝜑𝐹 : 𝑉onto𝐵 )
4 imasbas.r ( 𝜑𝑅𝑍 )
5 imassca.g 𝐺 = ( Scalar ‘ 𝑅 )
6 5 fvexi 𝐺 ∈ V
7 eqid ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } )
8 7 imasvalstr ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) Struct ⟨ 1 , 1 2 ⟩
9 scaid Scalar = Slot ( Scalar ‘ ndx )
10 snsstp1 { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ } ⊆ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ }
11 ssun2 { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } )
12 10 11 sstri { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } )
13 ssun1 ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } )
14 12 13 sstri { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } )
15 8 9 14 strfv ( 𝐺 ∈ V → 𝐺 = ( Scalar ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) ) )
16 6 15 ax-mp 𝐺 = ( Scalar ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) )
17 eqid ( +g𝑅 ) = ( +g𝑅 )
18 eqid ( .r𝑅 ) = ( .r𝑅 )
19 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
20 eqid ( ·𝑠𝑅 ) = ( ·𝑠𝑅 )
21 eqid ( ·𝑖𝑅 ) = ( ·𝑖𝑅 )
22 eqid ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 )
23 eqid ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 )
24 eqid ( le ‘ 𝑅 ) = ( le ‘ 𝑅 )
25 eqid ( +g𝑈 ) = ( +g𝑈 )
26 1 2 3 4 17 25 imasplusg ( 𝜑 → ( +g𝑈 ) = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 ( +g𝑅 ) 𝑞 ) ) ⟩ } )
27 eqid ( .r𝑈 ) = ( .r𝑈 )
28 1 2 3 4 18 27 imasmulr ( 𝜑 → ( .r𝑈 ) = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 ( .r𝑅 ) 𝑞 ) ) ⟩ } )
29 eqidd ( 𝜑 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) = 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) )
30 eqidd ( 𝜑 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } )
31 eqidd ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) = ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) )
32 eqid ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 )
33 1 2 3 4 23 32 imasds ( 𝜑 → ( dist ‘ 𝑈 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑅 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) )
34 eqidd ( 𝜑 → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) = ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) )
35 1 2 17 18 5 19 20 21 22 23 24 26 28 29 30 31 33 34 3 4 imasval ( 𝜑𝑈 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) )
36 35 fveq2d ( 𝜑 → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑈 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑈 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ 𝐺 ) , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠𝑅 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑅 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) ⟩ } ) ) )
37 16 36 eqtr4id ( 𝜑𝐺 = ( Scalar ‘ 𝑈 ) )