Metamath Proof Explorer


Theorem imassmpt

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses imassmpt.1 𝑥 𝜑
imassmpt.2 ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝐵𝑉 )
imassmpt.3 𝐹 = ( 𝑥𝐴𝐵 )
Assertion imassmpt ( 𝜑 → ( ( 𝐹𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ ( 𝐴𝐶 ) 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 imassmpt.1 𝑥 𝜑
2 imassmpt.2 ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝐵𝑉 )
3 imassmpt.3 𝐹 = ( 𝑥𝐴𝐵 )
4 df-ima ( 𝐹𝐶 ) = ran ( 𝐹𝐶 )
5 3 reseq1i ( 𝐹𝐶 ) = ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 )
6 resmpt3 ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
7 5 6 eqtri ( 𝐹𝐶 ) = ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
8 7 rneqi ran ( 𝐹𝐶 ) = ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
9 4 8 eqtri ( 𝐹𝐶 ) = ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
10 9 sseq1i ( ( 𝐹𝐶 ) ⊆ 𝐷 ↔ ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 ) ⊆ 𝐷 )
11 eqid ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
12 1 11 2 rnmptssbi ( 𝜑 → ( ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ ( 𝐴𝐶 ) 𝐵𝐷 ) )
13 10 12 syl5bb ( 𝜑 → ( ( 𝐹𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ ( 𝐴𝐶 ) 𝐵𝐷 ) )