Description: The image of a class is a subset of its range. Theorem 3.16(xi) of Monk1 p. 39. (Contributed by NM, 31-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | imassrn | ⊢ ( 𝐴 “ 𝐵 ) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) → ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
2 | 1 | ss2abi | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } ⊆ { 𝑦 ∣ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 } |
3 | dfima3 | ⊢ ( 𝐴 “ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } | |
4 | dfrn3 | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 } | |
5 | 2 3 4 | 3sstr4i | ⊢ ( 𝐴 “ 𝐵 ) ⊆ ran 𝐴 |