Step |
Hyp |
Ref |
Expression |
1 |
|
imasval.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasval.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasval.p |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
imasval.m |
⊢ × = ( .r ‘ 𝑅 ) |
5 |
|
imasval.g |
⊢ 𝐺 = ( Scalar ‘ 𝑅 ) |
6 |
|
imasval.k |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
7 |
|
imasval.q |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
8 |
|
imasval.i |
⊢ , = ( ·𝑖 ‘ 𝑅 ) |
9 |
|
imasval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
10 |
|
imasval.e |
⊢ 𝐸 = ( dist ‘ 𝑅 ) |
11 |
|
imasval.n |
⊢ 𝑁 = ( le ‘ 𝑅 ) |
12 |
|
imasval.a |
⊢ ( 𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
13 |
|
imasval.t |
⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
14 |
|
imasval.s |
⊢ ( 𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
15 |
|
imasval.w |
⊢ ( 𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
16 |
|
imasval.o |
⊢ ( 𝜑 → 𝑂 = ( 𝐽 qTop 𝐹 ) ) |
17 |
|
imasval.d |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
18 |
|
imasval.l |
⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
19 |
|
imasval.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
20 |
|
imasval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
21 |
|
df-imas |
⊢ “s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → “s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) ) ) |
23 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) → ( Base ‘ 𝑟 ) ∈ V ) |
24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑓 = 𝐹 ) |
25 |
24
|
rneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = ran 𝐹 ) |
26 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
27 |
19 26
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝐹 = 𝐵 ) |
29 |
25 28
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = 𝐵 ) |
30 |
29
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( Base ‘ ndx ) , ran 𝑓 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
31 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
32 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = ( Base ‘ 𝑟 ) ) |
34 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
35 |
32 33 34
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = 𝑉 ) |
36 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) |
37 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑞 ) ) |
38 |
36 37
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 = 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ) |
39 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
40 |
39 3
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g ‘ 𝑟 ) = + ) |
41 |
40
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) = ( 𝑝 + 𝑞 ) ) |
42 |
24 41
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) |
43 |
38 42
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 ) |
44 |
43
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
45 |
35 44
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
46 |
35 45
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
47 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
48 |
46 47
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ✚ ) |
49 |
48
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 = 〈 ( +g ‘ ndx ) , ✚ 〉 ) |
50 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
51 |
50 4
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = × ) |
52 |
51
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) = ( 𝑝 × 𝑞 ) ) |
53 |
24 52
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ) |
54 |
38 53
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 ) |
55 |
54
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
56 |
35 55
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
57 |
35 56
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
58 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
59 |
57 58
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∙ ) |
60 |
59
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 = 〈 ( .r ‘ ndx ) , ∙ 〉 ) |
61 |
30 49 60
|
tpeq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ) |
62 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = ( Scalar ‘ 𝑅 ) ) |
63 |
62 5
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = 𝐺 ) |
64 |
63
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝐺 〉 ) |
65 |
63
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = ( Base ‘ 𝐺 ) ) |
66 |
65 6
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = 𝐾 ) |
67 |
37
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ( 𝑓 ‘ 𝑞 ) } = { ( 𝐹 ‘ 𝑞 ) } ) |
68 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠 ‘ 𝑟 ) = ( ·𝑠 ‘ 𝑅 ) ) |
69 |
68 7
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠 ‘ 𝑟 ) = · ) |
70 |
69
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) = ( 𝑝 · 𝑞 ) ) |
71 |
24 70
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
72 |
66 67 71
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
73 |
72
|
iuneq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
74 |
35
|
iuneq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) ) |
75 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⊗ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
76 |
73 74 75
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ⊗ ) |
77 |
76
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 ) |
78 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖 ‘ 𝑟 ) = ( ·𝑖 ‘ 𝑅 ) ) |
79 |
78 8
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖 ‘ 𝑟 ) = , ) |
80 |
79
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) = ( 𝑝 , 𝑞 ) ) |
81 |
38 80
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 ) |
82 |
81
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
83 |
35 82
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
84 |
35 83
|
iuneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
85 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
86 |
84 85
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = 𝐼 ) |
87 |
86
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 = 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 ) |
88 |
64 77 87
|
tpeq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) |
89 |
61 88
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ) |
90 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) ) |
91 |
90 9
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = 𝐽 ) |
92 |
91 24
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = ( 𝐽 qTop 𝐹 ) ) |
93 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑂 = ( 𝐽 qTop 𝐹 ) ) |
94 |
92 93
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = 𝑂 ) |
95 |
94
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝑂 〉 ) |
96 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) ) |
97 |
96 11
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = 𝑁 ) |
98 |
24 97
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ∘ ( le ‘ 𝑟 ) ) = ( 𝐹 ∘ 𝑁 ) ) |
99 |
24
|
cnveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ◡ 𝑓 = ◡ 𝐹 ) |
100 |
98 99
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
101 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
102 |
100 101
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) = ≤ ) |
103 |
102
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
104 |
35
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑣 × 𝑣 ) = ( 𝑉 × 𝑉 ) ) |
105 |
104
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
106 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) ) |
107 |
106
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ↔ ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ) ) |
108 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
109 |
108
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ↔ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ) ) |
110 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
111 |
24
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) |
112 |
110 111
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
113 |
112
|
ralbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
114 |
107 109 113
|
3anbi123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
115 |
105 114
|
rabeqbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ) |
116 |
31
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) ) |
117 |
116 10
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = 𝐸 ) |
118 |
117
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) = ( 𝐸 ∘ 𝑔 ) ) |
119 |
118
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
120 |
115 119
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
121 |
120
|
rneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
122 |
121
|
iuneq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
123 |
122
|
infeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
124 |
29 29 123
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
125 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
126 |
124 125
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = 𝐷 ) |
127 |
126
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
128 |
95 103 127
|
tpeq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } = { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
129 |
89 128
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
130 |
23 129
|
csbied |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
131 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
132 |
19 131
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
133 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
134 |
2 133
|
eqeltrdi |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
135 |
132 134
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
136 |
20
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
137 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∈ V |
138 |
|
tpex |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ∈ V |
139 |
137 138
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∈ V |
140 |
|
tpex |
⊢ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V |
141 |
139 140
|
unex |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ∈ V |
142 |
141
|
a1i |
⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ∈ V ) |
143 |
22 130 135 136 142
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 “s 𝑅 ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
144 |
1 143
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |