| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasvscaf.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasvscaf.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasvscaf.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 4 |  | imasvscaf.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | imasvscaf.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑅 ) | 
						
							| 6 |  | imasvscaf.k | ⊢ 𝐾  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | imasvscaf.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑅 ) | 
						
							| 8 |  | imasvscaf.s | ⊢  ∙   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 9 |  | imasvscaf.e | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  =  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 11 |  | fvex | ⊢ ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) )  ∈  V | 
						
							| 12 | 10 11 | fnmpoi | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  Fn  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) | 
						
							| 13 |  | fnrel | ⊢ ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  Fn  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  →  Rel  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ Rel  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 15 | 14 | rgenw | ⊢ ∀ 𝑞  ∈  𝑉 Rel  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 16 |  | reliun | ⊢ ( Rel  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ↔  ∀ 𝑞  ∈  𝑉 Rel  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 17 | 15 16 | mpbir | ⊢ Rel  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 | imasvsca | ⊢ ( 𝜑  →   ∙   =  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 19 | 18 | releqd | ⊢ ( 𝜑  →  ( Rel   ∙   ↔  Rel  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) ) | 
						
							| 20 | 17 19 | mpbiri | ⊢ ( 𝜑  →  Rel   ∙  ) | 
						
							| 21 |  | dffn2 | ⊢ ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  Fn  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ↔  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) : ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V ) | 
						
							| 22 | 12 21 | mpbi | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) : ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V | 
						
							| 23 |  | fssxp | ⊢ ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) : ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ×  V ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ×  V ) | 
						
							| 25 |  | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝑉 )  →  ( 𝐹 ‘ 𝑞 )  ∈  𝐵 ) | 
						
							| 28 | 27 | snssd | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝑉 )  →  { ( 𝐹 ‘ 𝑞 ) }  ⊆  𝐵 ) | 
						
							| 29 |  | xpss2 | ⊢ ( { ( 𝐹 ‘ 𝑞 ) }  ⊆  𝐵  →  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ⊆  ( 𝐾  ×  𝐵 ) ) | 
						
							| 30 |  | xpss1 | ⊢ ( ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ⊆  ( 𝐾  ×  𝐵 )  →  ( ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ×  V )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 31 | 28 29 30 | 3syl | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝑉 )  →  ( ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ×  V )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 32 | 24 31 | sstrid | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝑉 )  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 34 |  | iunss | ⊢ ( ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V )  ↔  ∀ 𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( 𝜑  →  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 36 | 18 35 | eqsstrd | ⊢ ( 𝜑  →   ∙   ⊆  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 37 |  | dmss | ⊢ (  ∙   ⊆  ( ( 𝐾  ×  𝐵 )  ×  V )  →  dom   ∙   ⊆  dom  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝜑  →  dom   ∙   ⊆  dom  ( ( 𝐾  ×  𝐵 )  ×  V ) ) | 
						
							| 39 |  | vn0 | ⊢ V  ≠  ∅ | 
						
							| 40 |  | dmxp | ⊢ ( V  ≠  ∅  →  dom  ( ( 𝐾  ×  𝐵 )  ×  V )  =  ( 𝐾  ×  𝐵 ) ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ dom  ( ( 𝐾  ×  𝐵 )  ×  V )  =  ( 𝐾  ×  𝐵 ) | 
						
							| 42 | 38 41 | sseqtrdi | ⊢ ( 𝜑  →  dom   ∙   ⊆  ( 𝐾  ×  𝐵 ) ) | 
						
							| 43 |  | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 44 | 3 43 | syl | ⊢ ( 𝜑  →  ran  𝐹  =  𝐵 ) | 
						
							| 45 | 44 | xpeq2d | ⊢ ( 𝜑  →  ( 𝐾  ×  ran  𝐹 )  =  ( 𝐾  ×  𝐵 ) ) | 
						
							| 46 | 42 45 | sseqtrrd | ⊢ ( 𝜑  →  dom   ∙   ⊆  ( 𝐾  ×  ran  𝐹 ) ) | 
						
							| 47 |  | df-br | ⊢ ( 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤  ↔  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈   ∙  ) | 
						
							| 48 | 18 | eleq2d | ⊢ ( 𝜑  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈   ∙   ↔  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈   ∙   ↔  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) ) | 
						
							| 50 |  | eliun | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ↔  ∃ 𝑞  ∈  𝑉 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 51 |  | df-3an | ⊢ ( ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 )  ↔  ( ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 )  ∧  𝑞  ∈  𝑉 ) ) | 
						
							| 52 | 10 | mpofun | ⊢ Fun  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 53 |  | funopfv | ⊢ ( Fun  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ‘ 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 )  =  𝑤 ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ‘ 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 )  =  𝑤 ) | 
						
							| 55 |  | df-ov | ⊢ ( 𝑝 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) )  =  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ‘ 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ) | 
						
							| 56 |  | opex | ⊢ 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∈  V | 
						
							| 57 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 58 | 56 57 | opeldm | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∈  dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 59 | 10 11 | dmmpo | ⊢ dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  =  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) | 
						
							| 60 | 58 59 | eleqtrdi | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ) | 
						
							| 61 |  | opelxp | ⊢ ( 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ↔  ( 𝑝  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑎 )  ∈  { ( 𝐹 ‘ 𝑞 ) } ) ) | 
						
							| 62 | 60 61 | sylib | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( 𝑝  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑎 )  ∈  { ( 𝐹 ‘ 𝑞 ) } ) ) | 
						
							| 63 |  | fvoveq1 | ⊢ ( 𝑧  =  𝑝  →  ( 𝐹 ‘ ( 𝑧  ·  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 64 |  | eqidd | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑎 )  →  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 65 |  | fvoveq1 | ⊢ ( 𝑝  =  𝑧  →  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑧  ·  𝑞 ) ) ) | 
						
							| 66 |  | eqidd | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑧  ·  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑧  ·  𝑞 ) ) ) | 
						
							| 67 | 65 66 | cbvmpov | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  =  ( 𝑧  ∈  𝐾 ,  𝑦  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑧  ·  𝑞 ) ) ) | 
						
							| 68 | 63 64 67 11 | ovmpo | ⊢ ( ( 𝑝  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑎 )  ∈  { ( 𝐹 ‘ 𝑞 ) } )  →  ( 𝑝 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 69 | 62 68 | syl | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( 𝑝 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 70 | 55 69 | eqtr3id | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ‘ 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 71 | 54 70 | eqtr3d | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  ∧  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 73 |  | elsni | ⊢ ( ( 𝐹 ‘ 𝑎 )  ∈  { ( 𝐹 ‘ 𝑞 ) }  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 74 | 62 73 | simpl2im | ⊢ ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 75 | 9 74 | impel | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  ∧  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) )  →  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 76 | 72 75 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  ∧  〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 78 | 51 77 | sylan2br | ⊢ ( ( 𝜑  ∧  ( ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 )  ∧  𝑞  ∈  𝑉 ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 79 | 78 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  ∧  𝑞  ∈  𝑉 )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 80 | 79 | rexlimdva | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ( ∃ 𝑞  ∈  𝑉 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 81 | 50 80 | biimtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 82 | 49 81 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ( 〈 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ,  𝑤 〉  ∈   ∙   →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 83 | 47 82 | biimtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ( 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 84 | 83 | alrimiv | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ∀ 𝑤 ( 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) ) ) | 
						
							| 85 |  | mo2icl | ⊢ ( ∀ 𝑤 ( 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤  →  𝑤  =  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) ) )  →  ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉 ) )  →  ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) | 
						
							| 87 | 86 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  𝐾 ∀ 𝑎  ∈  𝑉 ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) | 
						
							| 88 |  | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹  Fn  𝑉 ) | 
						
							| 89 |  | opeq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑎 )  →  〈 𝑝 ,  𝑦 〉  =  〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉 ) | 
						
							| 90 | 89 | breq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑎 )  →  ( 〈 𝑝 ,  𝑦 〉  ∙  𝑤  ↔  〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) ) | 
						
							| 91 | 90 | mobidv | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑎 )  →  ( ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤  ↔  ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) ) | 
						
							| 92 | 91 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑦  ∈  ran  𝐹 ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤  ↔  ∀ 𝑎  ∈  𝑉 ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) ) | 
						
							| 93 | 3 88 92 | 3syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤  ↔  ∀ 𝑎  ∈  𝑉 ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) ) | 
						
							| 94 | 93 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤  ↔  ∀ 𝑝  ∈  𝐾 ∀ 𝑎  ∈  𝑉 ∃* 𝑤 〈 𝑝 ,  ( 𝐹 ‘ 𝑎 ) 〉  ∙  𝑤 ) ) | 
						
							| 95 | 87 94 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤 ) | 
						
							| 96 |  | breq1 | ⊢ ( 𝑥  =  〈 𝑝 ,  𝑦 〉  →  ( 𝑥  ∙  𝑤  ↔  〈 𝑝 ,  𝑦 〉  ∙  𝑤 ) ) | 
						
							| 97 | 96 | mobidv | ⊢ ( 𝑥  =  〈 𝑝 ,  𝑦 〉  →  ( ∃* 𝑤 𝑥  ∙  𝑤  ↔  ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤 ) ) | 
						
							| 98 | 97 | ralxp | ⊢ ( ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) ∃* 𝑤 𝑥  ∙  𝑤  ↔  ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 ∃* 𝑤 〈 𝑝 ,  𝑦 〉  ∙  𝑤 ) | 
						
							| 99 | 95 98 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) ∃* 𝑤 𝑥  ∙  𝑤 ) | 
						
							| 100 |  | ssralv | ⊢ ( dom   ∙   ⊆  ( 𝐾  ×  ran  𝐹 )  →  ( ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) ∃* 𝑤 𝑥  ∙  𝑤  →  ∀ 𝑥  ∈  dom   ∙  ∃* 𝑤 𝑥  ∙  𝑤 ) ) | 
						
							| 101 | 46 99 100 | sylc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  dom   ∙  ∃* 𝑤 𝑥  ∙  𝑤 ) | 
						
							| 102 |  | dffun7 | ⊢ ( Fun   ∙   ↔  ( Rel   ∙   ∧  ∀ 𝑥  ∈  dom   ∙  ∃* 𝑤 𝑥  ∙  𝑤 ) ) | 
						
							| 103 | 20 101 102 | sylanbrc | ⊢ ( 𝜑  →  Fun   ∙  ) | 
						
							| 104 |  | eqimss2 | ⊢ (  ∙   =  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  →  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 105 | 18 104 | syl | ⊢ ( 𝜑  →  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 106 |  | iunss | ⊢ ( ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙   ↔  ∀ 𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 107 | 105 106 | sylib | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 108 | 107 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝑉 )  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 109 | 108 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙  ) | 
						
							| 110 |  | dmss | ⊢ ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆   ∙   →  dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  dom   ∙  ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  ⊆  dom   ∙  ) | 
						
							| 112 | 59 111 | eqsstrrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } )  ⊆  dom   ∙  ) | 
						
							| 113 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  𝑝  ∈  𝐾 ) | 
						
							| 114 |  | fvex | ⊢ ( 𝐹 ‘ 𝑞 )  ∈  V | 
						
							| 115 | 114 | snid | ⊢ ( 𝐹 ‘ 𝑞 )  ∈  { ( 𝐹 ‘ 𝑞 ) } | 
						
							| 116 |  | opelxpi | ⊢ ( ( 𝑝  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑞 )  ∈  { ( 𝐹 ‘ 𝑞 ) } )  →  〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ) | 
						
							| 117 | 113 115 116 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑞 ) } ) ) | 
						
							| 118 | 112 117 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑞  ∈  𝑉 ) )  →  〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) | 
						
							| 119 | 118 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  𝐾 ∀ 𝑞  ∈  𝑉 〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) | 
						
							| 120 |  | opeq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑞 )  →  〈 𝑝 ,  𝑦 〉  =  〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉 ) | 
						
							| 121 | 120 | eleq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑞 )  →  ( 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙   ↔  〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) ) | 
						
							| 122 | 121 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑦  ∈  ran  𝐹 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙   ↔  ∀ 𝑞  ∈  𝑉 〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) ) | 
						
							| 123 | 3 88 122 | 3syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙   ↔  ∀ 𝑞  ∈  𝑉 〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) ) | 
						
							| 124 | 123 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙   ↔  ∀ 𝑝  ∈  𝐾 ∀ 𝑞  ∈  𝑉 〈 𝑝 ,  ( 𝐹 ‘ 𝑞 ) 〉  ∈  dom   ∙  ) ) | 
						
							| 125 | 119 124 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙  ) | 
						
							| 126 |  | eleq1 | ⊢ ( 𝑥  =  〈 𝑝 ,  𝑦 〉  →  ( 𝑥  ∈  dom   ∙   ↔  〈 𝑝 ,  𝑦 〉  ∈  dom   ∙  ) ) | 
						
							| 127 | 126 | ralxp | ⊢ ( ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) 𝑥  ∈  dom   ∙   ↔  ∀ 𝑝  ∈  𝐾 ∀ 𝑦  ∈  ran  𝐹 〈 𝑝 ,  𝑦 〉  ∈  dom   ∙  ) | 
						
							| 128 | 125 127 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) 𝑥  ∈  dom   ∙  ) | 
						
							| 129 |  | dfss3 | ⊢ ( ( 𝐾  ×  ran  𝐹 )  ⊆  dom   ∙   ↔  ∀ 𝑥  ∈  ( 𝐾  ×  ran  𝐹 ) 𝑥  ∈  dom   ∙  ) | 
						
							| 130 | 128 129 | sylibr | ⊢ ( 𝜑  →  ( 𝐾  ×  ran  𝐹 )  ⊆  dom   ∙  ) | 
						
							| 131 | 45 130 | eqsstrrd | ⊢ ( 𝜑  →  ( 𝐾  ×  𝐵 )  ⊆  dom   ∙  ) | 
						
							| 132 | 42 131 | eqssd | ⊢ ( 𝜑  →  dom   ∙   =  ( 𝐾  ×  𝐵 ) ) | 
						
							| 133 |  | df-fn | ⊢ (  ∙   Fn  ( 𝐾  ×  𝐵 )  ↔  ( Fun   ∙   ∧  dom   ∙   =  ( 𝐾  ×  𝐵 ) ) ) | 
						
							| 134 | 103 132 133 | sylanbrc | ⊢ ( 𝜑  →   ∙   Fn  ( 𝐾  ×  𝐵 ) ) |