| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasvscaf.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasvscaf.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasvscaf.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 4 |  | imasvscaf.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | imasvscaf.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑅 ) | 
						
							| 6 |  | imasvscaf.k | ⊢ 𝐾  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | imasvscaf.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑅 ) | 
						
							| 8 |  | imasvscaf.s | ⊢  ∙   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 9 |  | imasvscaf.e | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐾  ∧  𝑎  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ ( 𝑝  ·  𝑎 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | imasvscafn | ⊢ ( 𝜑  →   ∙   Fn  ( 𝐾  ×  𝐵 ) ) | 
						
							| 11 |  | fnfun | ⊢ (  ∙   Fn  ( 𝐾  ×  𝐵 )  →  Fun   ∙  ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  Fun   ∙  ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  Fun   ∙  ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑞  =  𝑌  →  𝐾  =  𝐾 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑞  =  𝑌  →  ( 𝐹 ‘ 𝑞 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 16 | 15 | sneqd | ⊢ ( 𝑞  =  𝑌  →  { ( 𝐹 ‘ 𝑞 ) }  =  { ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑞  =  𝑌  →  ( 𝑝  ·  𝑞 )  =  ( 𝑝  ·  𝑌 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑞  =  𝑌  →  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) | 
						
							| 19 | 14 16 18 | mpoeq123dv | ⊢ ( 𝑞  =  𝑌  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) )  =  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ) | 
						
							| 20 | 19 | ssiun2s | ⊢ ( 𝑌  ∈  𝑉  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  ⊆  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  ⊆  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 | imasvsca | ⊢ ( 𝜑  →   ∙   =  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →   ∙   =  ∪  𝑞  ∈  𝑉 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑞 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑞 ) ) ) ) | 
						
							| 24 | 21 23 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  ⊆   ∙  ) | 
						
							| 25 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  𝑋  ∈  𝐾 ) | 
						
							| 26 |  | fvex | ⊢ ( 𝐹 ‘ 𝑌 )  ∈  V | 
						
							| 27 | 26 | snid | ⊢ ( 𝐹 ‘ 𝑌 )  ∈  { ( 𝐹 ‘ 𝑌 ) } | 
						
							| 28 |  | opelxpi | ⊢ ( ( 𝑋  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑌 )  ∈  { ( 𝐹 ‘ 𝑌 ) } )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑌 ) } ) ) | 
						
							| 29 | 25 27 28 | sylancl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉  ∈  ( 𝐾  ×  { ( 𝐹 ‘ 𝑌 ) } ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  =  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) | 
						
							| 31 |  | fvex | ⊢ ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) )  ∈  V | 
						
							| 32 | 30 31 | dmmpo | ⊢ dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  =  ( 𝐾  ×  { ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 33 | 29 32 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉  ∈  dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ) | 
						
							| 34 |  | funssfv | ⊢ ( ( Fun   ∙   ∧  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) )  ⊆   ∙   ∧  〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉  ∈  dom  ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) )  →  (  ∙  ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 )  =  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 ) ) | 
						
							| 35 | 13 24 33 34 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  (  ∙  ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 )  =  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 ) ) | 
						
							| 36 |  | df-ov | ⊢ ( 𝑋  ∙  ( 𝐹 ‘ 𝑌 ) )  =  (  ∙  ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 ) | 
						
							| 37 |  | df-ov | ⊢ ( 𝑋 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) )  =  ( ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ‘ 〈 𝑋 ,  ( 𝐹 ‘ 𝑌 ) 〉 ) | 
						
							| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ∙  ( 𝐹 ‘ 𝑌 ) )  =  ( 𝑋 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 39 |  | fvoveq1 | ⊢ ( 𝑝  =  𝑋  →  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) )  =  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 40 |  | eqidd | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑌 )  →  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) )  =  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 41 |  | fvex | ⊢ ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) )  ∈  V | 
						
							| 42 | 39 40 30 41 | ovmpo | ⊢ ( ( 𝑋  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑌 )  ∈  { ( 𝐹 ‘ 𝑌 ) } )  →  ( 𝑋 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) )  =  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 43 | 25 27 42 | sylancl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋 ( 𝑝  ∈  𝐾 ,  𝑥  ∈  { ( 𝐹 ‘ 𝑌 ) }  ↦  ( 𝐹 ‘ ( 𝑝  ·  𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) )  =  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 44 | 38 43 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ∙  ( 𝐹 ‘ 𝑌 ) )  =  ( 𝐹 ‘ ( 𝑋  ·  𝑌 ) ) ) |