| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
⊢ ( ( 𝐴 ∪ 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) |
| 2 |
|
resundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) |
| 3 |
2
|
rneqi |
⊢ ran ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) = ran ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) |
| 4 |
|
rnun |
⊢ ran ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) = ( ran ( 𝐴 ↾ 𝐶 ) ∪ ran ( 𝐵 ↾ 𝐶 ) ) |
| 5 |
1 3 4
|
3eqtri |
⊢ ( ( 𝐴 ∪ 𝐵 ) “ 𝐶 ) = ( ran ( 𝐴 ↾ 𝐶 ) ∪ ran ( 𝐵 ↾ 𝐶 ) ) |
| 6 |
|
df-ima |
⊢ ( 𝐴 “ 𝐶 ) = ran ( 𝐴 ↾ 𝐶 ) |
| 7 |
|
df-ima |
⊢ ( 𝐵 “ 𝐶 ) = ran ( 𝐵 ↾ 𝐶 ) |
| 8 |
6 7
|
uneq12i |
⊢ ( ( 𝐴 “ 𝐶 ) ∪ ( 𝐵 “ 𝐶 ) ) = ( ran ( 𝐴 ↾ 𝐶 ) ∪ ran ( 𝐵 ↾ 𝐶 ) ) |
| 9 |
5 8
|
eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) “ 𝐶 ) = ( ( 𝐴 “ 𝐶 ) ∪ ( 𝐵 “ 𝐶 ) ) |