Metamath Proof Explorer


Theorem imbi12i

Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses imbi12i.1 ( 𝜑𝜓 )
imbi12i.2 ( 𝜒𝜃 )
Assertion imbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 imbi12i.1 ( 𝜑𝜓 )
2 imbi12i.2 ( 𝜒𝜃 )
3 imbi12 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜃 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) ) )
4 1 2 3 mp2 ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )