Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imbitrid.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| imbitrid.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | imbitrid | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | imbitrid.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | 2 | biimpd | ⊢ ( 𝜒 → ( 𝜓 → 𝜃 ) ) |
| 4 | 1 3 | syl5 | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) |