Description: Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recl.1 | ⊢ 𝐴 ∈ ℂ | |
Assertion | imcji | ⊢ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
2 | imcj | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) |