Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imre | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) | |
| 2 | negicn | ⊢ - i ∈ ℂ | |
| 3 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 5 | recl | ⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( ℜ ‘ ( - i · 𝐴 ) ) ∈ ℝ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - i · 𝐴 ) ) ∈ ℝ ) |
| 7 | 1 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |