Metamath Proof Explorer


Theorem imcl

Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imcl ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 imre ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) )
2 negicn - i ∈ ℂ
3 mulcl ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ )
4 2 3 mpan ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ )
5 recl ( ( - i · 𝐴 ) ∈ ℂ → ( ℜ ‘ ( - i · 𝐴 ) ) ∈ ℝ )
6 4 5 syl ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - i · 𝐴 ) ) ∈ ℝ )
7 1 6 eqeltrd ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ )