Description: Distributive law for implication. Compare Theorem *5.41 of WhiteheadRussell p. 125. (Contributed by NM, 5-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | imdi | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-2 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) | |
2 | pm2.86 | ⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
3 | 1 2 | impbii | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |