Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imdistand.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
Assertion | imdistand | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∧ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistand.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
2 | imdistan | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∧ 𝜃 ) ) ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∧ 𝜃 ) ) ) |