Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imdistani.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| Assertion | imdistani | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | anc2li | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜒 ) ) ) |
| 3 | 2 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |