| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℂ )  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 ) ) ) | 
						
							| 2 |  | 3anass | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 ) ) ) | 
						
							| 3 | 1 2 | bitr4i | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℂ )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 ) ) | 
						
							| 4 |  | rereccl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( 1  /  𝐵 )  ∈  ℝ ) | 
						
							| 5 | 4 | anim1i | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℂ )  →  ( ( 1  /  𝐵 )  ∈  ℝ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 6 | 3 5 | sylbir | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ( 1  /  𝐵 )  ∈  ℝ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 7 |  | immul2 | ⊢ ( ( ( 1  /  𝐵 )  ∈  ℝ  ∧  𝐴  ∈  ℂ )  →  ( ℑ ‘ ( ( 1  /  𝐵 )  ·  𝐴 ) )  =  ( ( 1  /  𝐵 )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ℑ ‘ ( ( 1  /  𝐵 )  ·  𝐴 ) )  =  ( ( 1  /  𝐵 )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 9 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 10 |  | divrec2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝐴  /  𝐵 )  =  ( ( 1  /  𝐵 )  ·  𝐴 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ℑ ‘ ( 𝐴  /  𝐵 ) )  =  ( ℑ ‘ ( ( 1  /  𝐵 )  ·  𝐴 ) ) ) | 
						
							| 12 | 9 11 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ℑ ‘ ( 𝐴  /  𝐵 ) )  =  ( ℑ ‘ ( ( 1  /  𝐵 )  ·  𝐴 ) ) ) | 
						
							| 13 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 16 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  𝐵  ≠  0 ) | 
						
							| 18 | 15 16 17 | divrec2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ( ℑ ‘ 𝐴 )  /  𝐵 )  =  ( ( 1  /  𝐵 )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 19 | 8 12 18 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( ℑ ‘ ( 𝐴  /  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  /  𝐵 ) ) |