Metamath Proof Explorer


Theorem imdivd

Description: Imaginary part of a division. Related to remul2 . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1 ( 𝜑𝐴 ∈ ℝ )
remul2d.2 ( 𝜑𝐵 ∈ ℂ )
redivd.2 ( 𝜑𝐴 ≠ 0 )
Assertion imdivd ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℑ ‘ 𝐵 ) / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 crred.1 ( 𝜑𝐴 ∈ ℝ )
2 remul2d.2 ( 𝜑𝐵 ∈ ℂ )
3 redivd.2 ( 𝜑𝐴 ≠ 0 )
4 imdiv ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℑ ‘ 𝐵 ) / 𝐴 ) )
5 2 1 3 4 syl3anc ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℑ ‘ 𝐵 ) / 𝐴 ) )