Metamath Proof Explorer


Theorem imf

Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imf ℑ : ℂ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 df-im ℑ = ( 𝑥 ∈ ℂ ↦ ( ℜ ‘ ( 𝑥 / i ) ) )
2 imval ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) = ( ℜ ‘ ( 𝑥 / i ) ) )
3 imcl ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ )
4 2 3 eqeltrrd ( 𝑥 ∈ ℂ → ( ℜ ‘ ( 𝑥 / i ) ) ∈ ℝ )
5 1 4 fmpti ℑ : ℂ ⟶ ℝ