Metamath Proof Explorer


Theorem imim3i

Description: Inference adding three nested antecedents. (Contributed by NM, 19-Dec-2006)

Ref Expression
Hypothesis imim3i.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion imim3i ( ( 𝜃𝜑 ) → ( ( 𝜃𝜓 ) → ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 imim3i.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 imim2i ( ( 𝜃𝜑 ) → ( 𝜃 → ( 𝜓𝜒 ) ) )
3 2 a2d ( ( 𝜃𝜑 ) → ( ( 𝜃𝜓 ) → ( 𝜃𝜒 ) ) )