Metamath Proof Explorer


Theorem imimorb

Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Wolf Lammen, 3-Apr-2013)

Ref Expression
Assertion imimorb ( ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 bi2.04 ( ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜒 ) ) )
2 dfor2 ( ( 𝜓𝜒 ) ↔ ( ( 𝜓𝜒 ) → 𝜒 ) )
3 2 imbi2i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜒 ) ) )
4 1 3 bitr4i ( ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )