Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Wolf Lammen, 3-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | imimorb | ⊢ ( ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 | ⊢ ( ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓 → 𝜒 ) → 𝜒 ) ) ) | |
2 | dfor2 | ⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜓 → 𝜒 ) → 𝜒 ) ) | |
3 | 2 | imbi2i | ⊢ ( ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓 → 𝜒 ) → 𝜒 ) ) ) |
4 | 1 3 | bitr4i | ⊢ ( ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ) |