Description: Imaginary part of a product. (Contributed by NM, 28-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recl.1 | ⊢ 𝐴 ∈ ℂ | |
readdi.2 | ⊢ 𝐵 ∈ ℂ | ||
Assertion | immuli | ⊢ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
2 | readdi.2 | ⊢ 𝐵 ∈ ℂ | |
3 | immul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |