Metamath Proof Explorer


Theorem imnand2

Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion imnand2 ( ( ¬ 𝜑𝜓 ) ↔ ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 nannot ( ¬ 𝜑 ↔ ( 𝜑𝜑 ) )
2 nannot ( ¬ 𝜓 ↔ ( 𝜓𝜓 ) )
3 1 2 anbi12i ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) )
4 3 notbii ( ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) )
5 iman ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ) )
6 df-nan ( ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) ↔ ¬ ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) )
7 4 5 6 3bitr4i ( ( ¬ 𝜑𝜓 ) ↔ ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) )