Description: Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| Assertion | imnegd | ⊢ ( 𝜑 → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | imneg | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |