Description: Implication in terms of disjunction. Theorem *4.6 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imor | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ ¬ 𝜑 → 𝜓 ) ) |
| 3 | df-or | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( ¬ ¬ 𝜑 → 𝜓 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |