Metamath Proof Explorer


Theorem imor

Description: Implication in terms of disjunction. Theorem *4.6 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993)

Ref Expression
Assertion imor ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
2 1 imbi1i ( ( 𝜑𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) )
3 df-or ( ( ¬ 𝜑𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) )
4 2 3 bitr4i ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )