Description: Importation inference. (Contributed by NM, 3-Jan-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imp.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | df-an | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜓 ) ) | |
3 | 1 | impi | ⊢ ( ¬ ( 𝜑 → ¬ 𝜓 ) → 𝜒 ) |
4 | 2 3 | sylbi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |