Metamath Proof Explorer


Theorem imp31

Description: An importation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis imp31.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion imp31 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 imp31.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 1 imp ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
3 2 imp ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )