Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
| Assertion | imp5g | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
| 2 | 1 | imp4b | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜒 ∧ 𝜃 ) → ( 𝜏 → 𝜂 ) ) ) | 
| 3 | 2 | impd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) ) |