Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | impac.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | impac | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impac.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | ancrd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜓 ) ) ) |
3 | 2 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜓 ) ) |