Metamath Proof Explorer


Theorem impbid1

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007)

Ref Expression
Hypotheses impbid1.1 ( 𝜑 → ( 𝜓𝜒 ) )
impbid1.2 ( 𝜒𝜓 )
Assertion impbid1 ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 impbid1.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 impbid1.2 ( 𝜒𝜓 )
3 2 a1i ( 𝜑 → ( 𝜒𝜓 ) )
4 1 3 impbid ( 𝜑 → ( 𝜓𝜒 ) )