Metamath Proof Explorer


Theorem impel

Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019) (Proof shortened by Wolf Lammen, 2-Sep-2020)

Ref Expression
Hypotheses impel.1 ( 𝜑 → ( 𝜓𝜒 ) )
impel.2 ( 𝜃𝜓 )
Assertion impel ( ( 𝜑𝜃 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 impel.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 impel.2 ( 𝜃𝜓 )
3 2 1 syl5 ( 𝜑 → ( 𝜃𝜒 ) )
4 3 imp ( ( 𝜑𝜃 ) → 𝜒 )