Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | impor | ⊢ ( ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor | ⊢ ( ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ↔ ( ¬ 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 2 | orass | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |