Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 6-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | imre | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imval | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( 𝐴 / i ) ) ) | |
2 | ax-icn | ⊢ i ∈ ℂ | |
3 | ine0 | ⊢ i ≠ 0 | |
4 | divrec2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) | |
5 | 2 3 4 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) |
6 | irec | ⊢ ( 1 / i ) = - i | |
7 | 6 | oveq1i | ⊢ ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 ) |
8 | 5 7 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( - i · 𝐴 ) ) |
9 | 8 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 𝐴 / i ) ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
10 | 1 9 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |