Metamath Proof Explorer


Theorem imre

Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imre ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 imval ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( 𝐴 / i ) ) )
2 ax-icn i ∈ ℂ
3 ine0 i ≠ 0
4 divrec2 ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) )
5 2 3 4 mp3an23 ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) )
6 irec ( 1 / i ) = - i
7 6 oveq1i ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 )
8 5 7 eqtrdi ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( - i · 𝐴 ) )
9 8 fveq2d ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 𝐴 / i ) ) = ( ℜ ‘ ( - i · 𝐴 ) ) )
10 1 9 eqtrd ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) )