| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imsdfn.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | imsdfn.8 | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 3 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 | 1 3 | nvf | ⊢ ( 𝑈  ∈  NrmCVec  →  ( normCV ‘ 𝑈 ) : 𝑋 ⟶ ℝ ) | 
						
							| 5 |  | eqid | ⊢ (  −𝑣  ‘ 𝑈 )  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 6 | 1 5 | nvmf | ⊢ ( 𝑈  ∈  NrmCVec  →  (  −𝑣  ‘ 𝑈 ) : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 7 |  | fco | ⊢ ( ( ( normCV ‘ 𝑈 ) : 𝑋 ⟶ ℝ  ∧  (  −𝑣  ‘ 𝑈 ) : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 )  →  ( ( normCV ‘ 𝑈 )  ∘  (  −𝑣  ‘ 𝑈 ) ) : ( 𝑋  ×  𝑋 ) ⟶ ℝ ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( 𝑈  ∈  NrmCVec  →  ( ( normCV ‘ 𝑈 )  ∘  (  −𝑣  ‘ 𝑈 ) ) : ( 𝑋  ×  𝑋 ) ⟶ ℝ ) | 
						
							| 9 | 5 3 2 | imsval | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷  =  ( ( normCV ‘ 𝑈 )  ∘  (  −𝑣  ‘ 𝑈 ) ) ) | 
						
							| 10 | 9 | feq1d | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ  ↔  ( ( normCV ‘ 𝑈 )  ∘  (  −𝑣  ‘ 𝑈 ) ) : ( 𝑋  ×  𝑋 ) ⟶ ℝ ) ) | 
						
							| 11 | 8 10 | mpbird | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ ) |