Step |
Hyp |
Ref |
Expression |
1 |
|
imsdval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
imsdval.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
imsdval.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
imsdval.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
5 |
2 3 4
|
imsval |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |
7 |
6
|
fveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
8 |
1 2
|
nvmf |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
9 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
10 |
|
fvco3 |
⊢ ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
12 |
11
|
3impb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
13 |
7 12
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
14 |
|
df-ov |
⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) |
15 |
|
df-ov |
⊢ ( 𝐴 𝑀 𝐵 ) = ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) |
16 |
15
|
fveq2i |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
17 |
13 14 16
|
3eqtr4g |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) |