| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imsmetlem.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
imsmetlem.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
imsmetlem.7 |
⊢ 𝑀 = ( inv ‘ 𝐺 ) |
| 4 |
|
imsmetlem.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 5 |
|
imsmetlem.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
| 6 |
|
imsmetlem.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 7 |
|
imsmetlem.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 8 |
|
imsmetlem.9 |
⊢ 𝑈 ∈ NrmCVec |
| 9 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
| 10 |
1 7
|
imsdf |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 11 |
8 10
|
ax-mp |
⊢ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ |
| 12 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 13 |
8 12
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ) ) |
| 15 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 16 |
1 4
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 17 |
8 15 16
|
mp3an12 |
⊢ ( 𝑦 ∈ 𝑋 → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 18 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 19 |
8 18
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 20 |
17 19
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 21 |
1 5 6
|
nvz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 22 |
8 20 21
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 23 |
1 5
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 24 |
8 23
|
ax-mp |
⊢ 𝑍 ∈ 𝑋 |
| 25 |
1 2
|
nvrcan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 26 |
8 25
|
mpan |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 27 |
24 26
|
mp3an2 |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 28 |
20 27
|
sylancom |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 29 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 30 |
17
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 31 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 32 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 33 |
8 32
|
mpan |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 34 |
29 30 31 33
|
syl3anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 35 |
1 2 4 5
|
nvlinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 36 |
8 35
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
| 39 |
1 2 5
|
nv0rid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 40 |
8 39
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 42 |
34 38 41
|
3eqtrd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = 𝑥 ) |
| 43 |
1 2 5
|
nv0lid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 44 |
8 43
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 46 |
42 45
|
eqeq12d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 47 |
28 46
|
bitr3d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ↔ 𝑥 = 𝑦 ) ) |
| 48 |
14 22 47
|
3bitrd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 49 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 50 |
1 4
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 51 |
8 15 50
|
mp3an12 |
⊢ ( 𝑧 ∈ 𝑋 → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 53 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 54 |
8 53
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 55 |
49 52 54
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 56 |
55
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 57 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 58 |
8 57
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 59 |
17 58
|
sylan2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 60 |
59
|
3adant2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 61 |
1 2 6
|
nvtri |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 62 |
8 61
|
mp3an1 |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 63 |
56 60 62
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 64 |
13
|
3adant1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 65 |
|
simp1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 66 |
17
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 67 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 68 |
8 67
|
mpan |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 69 |
56 65 66 68
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 70 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 71 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 72 |
8 71
|
mpan |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 73 |
49 52 70 72
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 74 |
1 2 4 5
|
nvlinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 75 |
8 74
|
mpan |
⊢ ( 𝑧 ∈ 𝑋 → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 77 |
76
|
oveq2d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
| 78 |
40
|
adantl |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 79 |
73 77 78
|
3eqtrd |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
| 80 |
79
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
| 81 |
80
|
oveq1d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
| 82 |
69 81
|
eqtr3d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
| 83 |
82
|
fveq2d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 84 |
64 83
|
eqtr4d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 85 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
| 86 |
8 85
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
| 87 |
1 2 4 6
|
nvdif |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 88 |
8 87
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 89 |
86 88
|
eqtrd |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 90 |
89
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 91 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 92 |
8 91
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 93 |
92
|
3adant2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 94 |
90 93
|
oveq12d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 95 |
63 84 94
|
3brtr4d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 96 |
95
|
3coml |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 97 |
9 11 48 96
|
ismeti |
⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |