Step |
Hyp |
Ref |
Expression |
1 |
|
imsmetlem.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
imsmetlem.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
imsmetlem.7 |
⊢ 𝑀 = ( inv ‘ 𝐺 ) |
4 |
|
imsmetlem.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
5 |
|
imsmetlem.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
6 |
|
imsmetlem.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
7 |
|
imsmetlem.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
8 |
|
imsmetlem.9 |
⊢ 𝑈 ∈ NrmCVec |
9 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
10 |
1 7
|
imsdf |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
11 |
8 10
|
ax-mp |
⊢ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ |
12 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
13 |
8 12
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ) ) |
15 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
16 |
1 4
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
17 |
8 15 16
|
mp3an12 |
⊢ ( 𝑦 ∈ 𝑋 → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
18 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
19 |
8 18
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
20 |
17 19
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
21 |
1 5 6
|
nvz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
22 |
8 20 21
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
23 |
1 5
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
24 |
8 23
|
ax-mp |
⊢ 𝑍 ∈ 𝑋 |
25 |
1 2
|
nvrcan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
26 |
8 25
|
mpan |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
27 |
24 26
|
mp3an2 |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
28 |
20 27
|
sylancom |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
29 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
30 |
17
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
31 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
32 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
33 |
8 32
|
mpan |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
34 |
29 30 31 33
|
syl3anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
35 |
1 2 4 5
|
nvlinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
36 |
8 35
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
37 |
36
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
39 |
1 2 5
|
nv0rid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
40 |
8 39
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
41 |
40
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
42 |
34 38 41
|
3eqtrd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = 𝑥 ) |
43 |
1 2 5
|
nv0lid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
44 |
8 43
|
mpan |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
45 |
44
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
46 |
42 45
|
eqeq12d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
47 |
28 46
|
bitr3d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ↔ 𝑥 = 𝑦 ) ) |
48 |
14 22 47
|
3bitrd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
49 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
50 |
1 4
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
51 |
8 15 50
|
mp3an12 |
⊢ ( 𝑧 ∈ 𝑋 → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
52 |
51
|
adantr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
53 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
54 |
8 53
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
55 |
49 52 54
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
56 |
55
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
57 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
58 |
8 57
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
59 |
17 58
|
sylan2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
60 |
59
|
3adant2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
61 |
1 2 6
|
nvtri |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
62 |
8 61
|
mp3an1 |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
63 |
56 60 62
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
64 |
13
|
3adant1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
65 |
|
simp1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
66 |
17
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
67 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
68 |
8 67
|
mpan |
⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
69 |
56 65 66 68
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
70 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
71 |
1 2
|
nvass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
72 |
8 71
|
mpan |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
73 |
49 52 70 72
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
74 |
1 2 4 5
|
nvlinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
75 |
8 74
|
mpan |
⊢ ( 𝑧 ∈ 𝑋 → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
76 |
75
|
adantr |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
77 |
76
|
oveq2d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
78 |
40
|
adantl |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
79 |
73 77 78
|
3eqtrd |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
80 |
79
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
81 |
80
|
oveq1d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
82 |
69 81
|
eqtr3d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
83 |
82
|
fveq2d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
84 |
64 83
|
eqtr4d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
85 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
86 |
8 85
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
87 |
1 2 4 6
|
nvdif |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
88 |
8 87
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
89 |
86 88
|
eqtrd |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
90 |
89
|
3adant3 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
91 |
1 2 4 6 7
|
imsdval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
92 |
8 91
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
93 |
92
|
3adant2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
94 |
90 93
|
oveq12d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
95 |
63 84 94
|
3brtr4d |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
96 |
95
|
3coml |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
97 |
9 11 48 96
|
ismeti |
⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |