Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Induced metric of a normed complex vector space
imsxmet
Metamath Proof Explorer
Description: The induced metric of a normed complex vector space is an extended
metric space. (Contributed by Mario Carneiro , 10-Sep-2015)
(New usage is discouraged.)
Ref
Expression
Hypotheses
imsmet.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
imsmet.8
⊢ 𝐷 = ( IndMet ‘ 𝑈 )
Assertion
imsxmet
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
Proof
Step
Hyp
Ref
Expression
1
imsmet.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
2
imsmet.8
⊢ 𝐷 = ( IndMet ‘ 𝑈 )
3
1 2
imsmet
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) )
4
metxmet
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
5
3 4
syl
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )