Metamath Proof Explorer


Theorem imsxmet

Description: The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses imsmet.1 𝑋 = ( BaseSet ‘ 𝑈 )
imsmet.8 𝐷 = ( IndMet ‘ 𝑈 )
Assertion imsxmet ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 imsmet.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 imsmet.8 𝐷 = ( IndMet ‘ 𝑈 )
3 1 2 imsmet ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) )
4 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
5 3 4 syl ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )