Step |
Hyp |
Ref |
Expression |
1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
2mulicn |
⊢ ( 2 · i ) ∈ ℂ |
4 |
|
2muline0 |
⊢ ( 2 · i ) ≠ 0 |
5 |
|
divcan4 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) |
6 |
3 4 5
|
mp3an23 |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) |
8 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
ax-icn |
⊢ i ∈ ℂ |
11 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
12 |
10 2 11
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
13 |
9 12
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
14 |
13 9 12
|
subsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
15 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
16 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
18 |
12
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
19 |
|
mulcom |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) ) |
20 |
3 19
|
mpan2 |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) ) |
21 |
|
2cn |
⊢ 2 ∈ ℂ |
22 |
|
mulass |
⊢ ( ( 2 ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
23 |
21 10 22
|
mp3an12 |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
24 |
20 23
|
eqtrd |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
25 |
2 24
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
26 |
9 12
|
pncan2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
28 |
18 25 27
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
29 |
14 17 28
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
31 |
7 30
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |