Metamath Proof Explorer


Theorem in12

Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001)

Ref Expression
Assertion in12 ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
2 1 ineq1i ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐵𝐴 ) ∩ 𝐶 )
3 inass ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∩ ( 𝐵𝐶 ) )
4 inass ( ( 𝐵𝐴 ) ∩ 𝐶 ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )
5 2 3 4 3eqtr3i ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )