Metamath Proof Explorer


Theorem in31

Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012)

Ref Expression
Assertion in31 ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐶𝐵 ) ∩ 𝐴 )

Proof

Step Hyp Ref Expression
1 in12 ( 𝐶 ∩ ( 𝐴𝐵 ) ) = ( 𝐴 ∩ ( 𝐶𝐵 ) )
2 incom ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐶 ∩ ( 𝐴𝐵 ) )
3 incom ( ( 𝐶𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐶𝐵 ) )
4 1 2 3 3eqtr4i ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐶𝐵 ) ∩ 𝐴 )