Metamath Proof Explorer


Theorem in32

Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion in32 ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ 𝐵 )

Proof

Step Hyp Ref Expression
1 inass ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∩ ( 𝐵𝐶 ) )
2 in12 ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )
3 incom ( 𝐵 ∩ ( 𝐴𝐶 ) ) = ( ( 𝐴𝐶 ) ∩ 𝐵 )
4 1 2 3 3eqtri ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ 𝐵 )