Metamath Proof Explorer


Theorem in3an

Description: The virtual deduction introduction rule converting the second conjunct of the third virtual hypothesis into the antecedent of the conclusion. exp4a is the non-virtual deduction form of in3an . (Contributed by Alan Sare, 25-Jun-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis in3an.1 (    𝜑    ,    𝜓    ,    ( 𝜒𝜃 )    ▶    𝜏    )
Assertion in3an (    𝜑    ,    𝜓    ,    𝜒    ▶    ( 𝜃𝜏 )    )

Proof

Step Hyp Ref Expression
1 in3an.1 (    𝜑    ,    𝜓    ,    ( 𝜒𝜃 )    ▶    𝜏    )
2 1 dfvd3i ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜃 ) → 𝜏 ) ) )
3 2 exp4a ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )
4 3 dfvd3ir (    𝜑    ,    𝜓    ,    𝜒    ▶    ( 𝜃𝜏 )    )