Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001)
Ref | Expression | ||
---|---|---|---|
Assertion | in4 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐶 ∩ 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐵 ∩ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 | ⊢ ( 𝐵 ∩ ( 𝐶 ∩ 𝐷 ) ) = ( 𝐶 ∩ ( 𝐵 ∩ 𝐷 ) ) | |
2 | 1 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐶 ∩ 𝐷 ) ) ) = ( 𝐴 ∩ ( 𝐶 ∩ ( 𝐵 ∩ 𝐷 ) ) ) |
3 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐶 ∩ 𝐷 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐶 ∩ 𝐷 ) ) ) | |
4 | inass | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐵 ∩ 𝐷 ) ) = ( 𝐴 ∩ ( 𝐶 ∩ ( 𝐵 ∩ 𝐷 ) ) ) | |
5 | 2 3 4 | 3eqtr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐶 ∩ 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐵 ∩ 𝐷 ) ) |