Metamath Proof Explorer


Theorem in4

Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001)

Ref Expression
Assertion in4 ( ( 𝐴𝐵 ) ∩ ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 in12 ( 𝐵 ∩ ( 𝐶𝐷 ) ) = ( 𝐶 ∩ ( 𝐵𝐷 ) )
2 1 ineq2i ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐶𝐷 ) ) ) = ( 𝐴 ∩ ( 𝐶 ∩ ( 𝐵𝐷 ) ) )
3 inass ( ( 𝐴𝐵 ) ∩ ( 𝐶𝐷 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐶𝐷 ) ) )
4 inass ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐷 ) ) = ( 𝐴 ∩ ( 𝐶 ∩ ( 𝐵𝐷 ) ) )
5 2 3 4 3eqtr4i ( ( 𝐴𝐵 ) ∩ ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐷 ) )