| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
| 2 |
|
winaon |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ On ) |
| 4 |
|
winalim |
⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |
| 5 |
1 4
|
syl |
⊢ ( 𝐴 ∈ Inacc → Lim 𝐴 ) |
| 6 |
|
r1lim |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
| 8 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 9 |
3 8
|
sylan |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
| 12 |
11
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 13 |
10 12
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 16 |
15
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 17 |
14 16
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) |
| 18 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
| 20 |
19
|
breq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) |
| 21 |
18 20
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) |
| 22 |
|
ne0i |
⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 23 |
|
0sdomg |
⊢ ( 𝐴 ∈ On → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 24 |
22 23
|
imbitrrid |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ≺ 𝐴 ) ) |
| 25 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
| 26 |
25
|
breq1i |
⊢ ( ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) |
| 27 |
24 26
|
imbitrrdi |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 28 |
1 2 27
|
3syl |
⊢ ( 𝐴 ∈ Inacc → ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 29 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 30 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
| 31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ On → Tr 𝐴 ) |
| 32 |
|
trsuc |
⊢ ( ( Tr 𝐴 ∧ suc 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 33 |
32
|
ex |
⊢ ( Tr 𝐴 → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 34 |
3 31 33
|
3syl |
⊢ ( 𝐴 ∈ Inacc → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 36 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 37 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V |
| 38 |
37
|
cardid |
⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≈ ( 𝑅1 ‘ 𝑦 ) |
| 39 |
38
|
ensymi |
⊢ ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 40 |
|
pwen |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ 𝒫 ( 𝑅1 ‘ 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 42 |
36 41
|
eqbrtrdi |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 43 |
|
winacard |
⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) |
| 44 |
43
|
eleq2d |
⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 45 |
|
cardsdom |
⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ∈ V ∧ 𝐴 ∈ On ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 46 |
37 2 45
|
sylancr |
⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 47 |
44 46
|
bitr3d |
⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 48 |
1 47
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 49 |
|
elina |
⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 ) ) |
| 50 |
49
|
simp3bi |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 ) |
| 51 |
|
pweq |
⊢ ( 𝑧 = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 𝑧 = 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 52 |
51
|
breq1d |
⊢ ( 𝑧 = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝒫 𝑧 ≺ 𝐴 ↔ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 53 |
52
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 54 |
50 53
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 55 |
48 54
|
sylbird |
⊢ ( 𝐴 ∈ Inacc → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 56 |
55
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) |
| 57 |
|
ensdomtr |
⊢ ( ( ( 𝑅1 ‘ suc 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) |
| 58 |
42 56 57
|
syl2an |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝐴 ∈ Inacc ∧ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) |
| 59 |
58
|
expr |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) |
| 60 |
35 59
|
imim12d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) |
| 61 |
60
|
ex |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ Inacc → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) ) |
| 62 |
|
vex |
⊢ 𝑥 ∈ V |
| 63 |
|
r1lim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ) |
| 64 |
62 63
|
mpan |
⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑅1 ‘ 𝑧 ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑦 ≼ |
| 68 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 69 |
66 67 68
|
nfbr |
⊢ Ⅎ 𝑦 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ 𝑧 ) ) |
| 71 |
70
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ↔ ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 72 |
|
fvex |
⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V |
| 73 |
62 72
|
iunex |
⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V |
| 74 |
|
ssiun2 |
⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 75 |
|
ssdomg |
⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 76 |
73 74 75
|
mpsyl |
⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 77 |
|
endomtr |
⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 78 |
39 76 77
|
sylancr |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 79 |
65 69 71 78
|
vtoclgaf |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 80 |
79
|
rgen |
⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 81 |
|
iundom |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 82 |
62 80 81
|
mp2an |
⊢ ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 83 |
62 73
|
unex |
⊢ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V |
| 84 |
|
ssun2 |
⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 85 |
|
ssdomg |
⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 86 |
83 84 85
|
mp2 |
⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 87 |
62
|
xpdom2 |
⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 88 |
86 87
|
ax-mp |
⊢ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 89 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 90 |
|
ssdomg |
⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( 𝑥 ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 91 |
83 89 90
|
mp2 |
⊢ 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 92 |
83
|
xpdom1 |
⊢ ( 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 93 |
91 92
|
ax-mp |
⊢ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 94 |
|
domtr |
⊢ ( ( ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ∧ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 95 |
88 93 94
|
mp2an |
⊢ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 96 |
|
limomss |
⊢ ( Lim 𝑥 → ω ⊆ 𝑥 ) |
| 97 |
96 89
|
sstrdi |
⊢ ( Lim 𝑥 → ω ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 98 |
|
ssdomg |
⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( ω ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 99 |
83 97 98
|
mpsyl |
⊢ ( Lim 𝑥 → ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 100 |
|
infxpidm |
⊢ ( ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 101 |
99 100
|
syl |
⊢ ( Lim 𝑥 → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 102 |
|
domentr |
⊢ ( ( ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ∧ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 103 |
95 101 102
|
sylancr |
⊢ ( Lim 𝑥 → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 104 |
|
domtr |
⊢ ( ( ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∧ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 105 |
82 103 104
|
sylancr |
⊢ ( Lim 𝑥 → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 106 |
64 105
|
eqbrtrd |
⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 107 |
106
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 108 |
|
eleq1a |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = 𝑥 → 𝐴 ∈ 𝐴 ) ) |
| 109 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
| 110 |
3 29 109
|
3syl |
⊢ ( 𝐴 ∈ Inacc → ¬ 𝐴 ∈ 𝐴 ) |
| 111 |
108 110
|
nsyli |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥 ) ) |
| 112 |
111
|
imp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Inacc ) → ¬ 𝐴 = 𝑥 ) |
| 113 |
112
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ 𝐴 = 𝑥 ) |
| 114 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 115 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
| 116 |
62
|
elon |
⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
| 117 |
115 116
|
sylibr |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 118 |
117
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ∈ On ) |
| 119 |
|
cardf |
⊢ card : V ⟶ On |
| 120 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 121 |
|
dffn2 |
⊢ ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V ) |
| 122 |
120 121
|
mpbi |
⊢ 𝑅1 : On ⟶ V |
| 123 |
|
fco |
⊢ ( ( card : V ⟶ On ∧ 𝑅1 : On ⟶ V ) → ( card ∘ 𝑅1 ) : On ⟶ On ) |
| 124 |
119 122 123
|
mp2an |
⊢ ( card ∘ 𝑅1 ) : On ⟶ On |
| 125 |
|
onss |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
| 126 |
|
fssres |
⊢ ( ( ( card ∘ 𝑅1 ) : On ⟶ On ∧ 𝑥 ⊆ On ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On ) |
| 127 |
124 125 126
|
sylancr |
⊢ ( 𝑥 ∈ On → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On ) |
| 128 |
|
ffn |
⊢ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 129 |
118 127 128
|
3syl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 130 |
3
|
ad2antlr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝐴 ∈ On ) |
| 131 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 132 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝐴 ) |
| 133 |
|
ontr1 |
⊢ ( 𝐴 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 134 |
133
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 135 |
130 131 132 134
|
syl12anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 136 |
37 130 45
|
sylancr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 137 |
1 43
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( card ‘ 𝐴 ) = 𝐴 ) |
| 138 |
137
|
ad2antlr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 139 |
138
|
eleq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 140 |
136 139
|
bitr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 141 |
140
|
biimpd |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 142 |
135 141
|
embantd |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 143 |
117
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → 𝑥 ∈ On ) |
| 144 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑥 → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ) |
| 145 |
144
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ) |
| 146 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 147 |
|
fvco3 |
⊢ ( ( 𝑅1 : On ⟶ V ∧ 𝑦 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 148 |
122 146 147
|
sylancr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 149 |
145 148
|
eqtrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 150 |
143 149
|
sylan |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 151 |
150
|
eleq1d |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 152 |
142 151
|
sylibrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 153 |
152
|
ralimdva |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 154 |
153
|
impr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 155 |
|
ffnfv |
⊢ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ↔ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 156 |
129 154 155
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) |
| 157 |
|
eleq2 |
⊢ ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 158 |
157
|
biimpa |
⊢ ( ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 159 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 160 |
|
cardon |
⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On |
| 161 |
160
|
onelssi |
⊢ ( 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝑧 ⊆ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 162 |
149
|
sseq2d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ↔ 𝑧 ⊆ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 163 |
161 162
|
imbitrrid |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 164 |
163
|
reximdva |
⊢ ( 𝑥 ∈ On → ( ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 165 |
159 164
|
biimtrid |
⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 166 |
158 165
|
syl5 |
⊢ ( 𝑥 ∈ On → ( ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 167 |
166
|
expdimp |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 168 |
167
|
ralrimiv |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) |
| 169 |
168
|
ex |
⊢ ( 𝑥 ∈ On → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 170 |
118 169
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 171 |
|
ffun |
⊢ ( ( card ∘ 𝑅1 ) : On ⟶ On → Fun ( card ∘ 𝑅1 ) ) |
| 172 |
124 171
|
ax-mp |
⊢ Fun ( card ∘ 𝑅1 ) |
| 173 |
|
resfunexg |
⊢ ( ( Fun ( card ∘ 𝑅1 ) ∧ 𝑥 ∈ V ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ∈ V ) |
| 174 |
172 62 173
|
mp2an |
⊢ ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ∈ V |
| 175 |
|
feq1 |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑤 : 𝑥 ⟶ 𝐴 ↔ ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) ) |
| 176 |
|
fveq1 |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑤 ‘ 𝑦 ) = ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) |
| 177 |
176
|
sseq2d |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 178 |
177
|
rexbidv |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 179 |
178
|
ralbidv |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 180 |
175 179
|
anbi12d |
⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) ) |
| 181 |
174 180
|
spcev |
⊢ ( ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) → ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ) |
| 182 |
156 170 181
|
syl6an |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ) ) |
| 183 |
3
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝐴 ∈ On ) |
| 184 |
|
cfflb |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 185 |
183 118 184
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 186 |
182 185
|
syld |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 187 |
49
|
simp2bi |
⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 188 |
187
|
sseq1d |
⊢ ( 𝐴 ∈ Inacc → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 189 |
188
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 190 |
186 189
|
sylibd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝐴 ⊆ 𝑥 ) ) |
| 191 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 192 |
183 118 191
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 193 |
190 192
|
sylibd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ¬ 𝑥 ∈ 𝐴 ) ) |
| 194 |
114 193
|
mt2d |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 195 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 196 |
62 195
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 197 |
160
|
a1i |
⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 198 |
196 197
|
mprg |
⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On |
| 199 |
|
eqcom |
⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ↔ 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 200 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 201 |
|
eloni |
⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → Ord ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 202 |
|
ordequn |
⊢ ( ( Ord 𝑥 ∧ Ord ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 203 |
200 201 202
|
syl2an |
⊢ ( ( 𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ( 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 204 |
199 203
|
biimtrid |
⊢ ( ( 𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 205 |
118 198 204
|
sylancl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 206 |
113 194 205
|
mtord |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) |
| 207 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
| 208 |
183 114 207
|
sylc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ⊆ 𝐴 ) |
| 209 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) |
| 210 |
130 142 209
|
sylsyld |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) |
| 211 |
210
|
ralimdva |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) |
| 212 |
211
|
impr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) |
| 213 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) |
| 214 |
212 213
|
sylibr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) |
| 215 |
208 214
|
unssd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ) |
| 216 |
|
id |
⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) ) |
| 217 |
|
iuneq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) = ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 218 |
216 217
|
uneq12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 219 |
218
|
eleq1d |
⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ↔ ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) ) |
| 220 |
|
0elon |
⊢ ∅ ∈ On |
| 221 |
220
|
elimel |
⊢ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ On |
| 222 |
221
|
elexi |
⊢ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ V |
| 223 |
|
iunon |
⊢ ( ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ V ∧ ∀ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 224 |
222 223
|
mpan |
⊢ ( ∀ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 225 |
160
|
a1i |
⊢ ( 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 226 |
224 225
|
mprg |
⊢ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On |
| 227 |
221 226
|
onun2i |
⊢ ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On |
| 228 |
219 227
|
dedth |
⊢ ( 𝑥 ∈ On → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 229 |
117 228
|
syl |
⊢ ( Lim 𝑥 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 230 |
229
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 231 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) → 𝐴 ∈ On ) |
| 232 |
|
onsseleq |
⊢ ( ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ↔ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) ) |
| 233 |
230 231 232
|
syl2an |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ↔ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) ) |
| 234 |
215 233
|
mpbid |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) |
| 235 |
234
|
orcomd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) ) |
| 236 |
235
|
ord |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ¬ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) ) |
| 237 |
206 236
|
mpd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) |
| 238 |
137
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 239 |
|
iscard |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 ) ) |
| 240 |
239
|
simprbi |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 ) |
| 241 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑧 ≺ 𝐴 ↔ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) |
| 242 |
241
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) |
| 243 |
238 240 242
|
3syl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) |
| 244 |
237 243
|
mpd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) |
| 245 |
|
domsdomtr |
⊢ ( ( ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) |
| 246 |
107 244 245
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) |
| 247 |
246
|
exp43 |
⊢ ( 𝑥 ∈ 𝐴 → ( Lim 𝑥 → ( 𝐴 ∈ Inacc → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) ) |
| 248 |
247
|
com4l |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ Inacc → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) ) |
| 249 |
13 17 21 28 61 248
|
tfinds2 |
⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) |
| 250 |
249
|
impd |
⊢ ( 𝑥 ∈ On → ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) |
| 251 |
9 250
|
mpcom |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) |
| 252 |
|
sdomdom |
⊢ ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) |
| 253 |
251 252
|
syl |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) |
| 254 |
253
|
ralrimiva |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) |
| 255 |
|
iundom |
⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 256 |
3 254 255
|
syl2anc |
⊢ ( 𝐴 ∈ Inacc → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 257 |
7 256
|
eqbrtrd |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 258 |
|
winainf |
⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) |
| 259 |
1 258
|
syl |
⊢ ( 𝐴 ∈ Inacc → ω ⊆ 𝐴 ) |
| 260 |
|
infxpen |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 261 |
3 259 260
|
syl2anc |
⊢ ( 𝐴 ∈ Inacc → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 262 |
|
domentr |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ) |
| 263 |
257 261 262
|
syl2anc |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ) |
| 264 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
| 265 |
122
|
fdmi |
⊢ dom 𝑅1 = On |
| 266 |
2 265
|
eleqtrrdi |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ dom 𝑅1 ) |
| 267 |
|
onssr1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 268 |
1 266 267
|
3syl |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 269 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 270 |
264 268 269
|
mpsyl |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 271 |
|
sbth |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
| 272 |
263 270 271
|
syl2anc |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |