| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
| 2 |
|
winaon |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) |
| 3 |
|
winalim |
⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |
| 4 |
|
r1lim |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 7 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 8 |
6 7
|
bitrdi |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 9 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 10 |
2 9
|
sylan |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 11 |
|
r1pw |
⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 13 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
| 14 |
3 13
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
| 15 |
|
r1ord2 |
⊢ ( 𝐴 ∈ On → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 17 |
14 16
|
sylbid |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 19 |
18
|
sseld |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 20 |
12 19
|
sylbid |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 21 |
20
|
rexlimdva |
⊢ ( 𝐴 ∈ Inaccw → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 22 |
8 21
|
sylbid |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 23 |
1 22
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 25 |
|
elssuni |
⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ∪ ( 𝑅1 ‘ 𝐴 ) ) |
| 26 |
|
r1tr2 |
⊢ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |
| 27 |
25 26
|
sstrdi |
⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 28 |
24 27
|
jccil |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 30 |
1 2
|
syl |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ On ) |
| 31 |
|
r1suc |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 32 |
31
|
eleq2d |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
| 33 |
30 32
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
| 34 |
|
rankr1ai |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) |
| 35 |
33 34
|
biimtrrdi |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) |
| 37 |
|
fvex |
⊢ ( rank ‘ 𝑥 ) ∈ V |
| 38 |
37
|
elsuc |
⊢ ( ( rank ‘ 𝑥 ) ∈ suc 𝐴 ↔ ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
| 39 |
36 38
|
sylib |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
| 40 |
39
|
orcomd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 41 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
| 42 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 44 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 45 |
41 43 44
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 46 |
|
rankcf |
⊢ ¬ 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) |
| 47 |
|
fveq2 |
⊢ ( ( rank ‘ 𝑥 ) = 𝐴 → ( cf ‘ ( rank ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) ) |
| 48 |
|
elina |
⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) |
| 49 |
48
|
simp2bi |
⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 50 |
47 49
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( cf ‘ ( rank ‘ 𝑥 ) ) = 𝐴 ) |
| 51 |
50
|
breq2d |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) ↔ 𝑥 ≺ 𝐴 ) ) |
| 52 |
46 51
|
mtbii |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ 𝐴 ) |
| 53 |
|
inar1 |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
| 54 |
|
sdomentr |
⊢ ( ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
| 55 |
54
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 56 |
53 55
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 58 |
52 57
|
mtod |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 59 |
58
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 60 |
|
bren2 |
⊢ ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 61 |
45 59 60
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
| 62 |
61
|
ex |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 63 |
|
r1elwf |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 64 |
33 63
|
biimtrrdi |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 65 |
64
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 66 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 67 |
66
|
fndmi |
⊢ dom 𝑅1 = On |
| 68 |
30 67
|
eleqtrrdi |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝑅1 ) |
| 70 |
|
rankr1ag |
⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 71 |
65 69 70
|
syl2anc |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 72 |
71
|
biimprd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 73 |
62 72
|
orim12d |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 74 |
40 73
|
mpd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 75 |
74
|
ralrimiva |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 76 |
|
eltsk2g |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) ) |
| 77 |
41 76
|
ax-mp |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 78 |
29 75 77
|
sylanbrc |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |