Step |
Hyp |
Ref |
Expression |
1 |
|
inawina |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
2 |
|
winaon |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) |
3 |
|
winalim |
⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |
4 |
|
r1lim |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) ) |
7 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
8 |
6 7
|
bitrdi |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
9 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
10 |
2 9
|
sylan |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
11 |
|
r1pw |
⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
13 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
14 |
3 13
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
15 |
|
r1ord2 |
⊢ ( 𝐴 ∈ On → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
16 |
2 15
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
17 |
14 16
|
sylbid |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
19 |
18
|
sseld |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
20 |
12 19
|
sylbid |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
21 |
20
|
rexlimdva |
⊢ ( 𝐴 ∈ Inaccw → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
22 |
8 21
|
sylbid |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
23 |
1 22
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
25 |
|
elssuni |
⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ∪ ( 𝑅1 ‘ 𝐴 ) ) |
26 |
|
r1tr2 |
⊢ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |
27 |
25 26
|
sstrdi |
⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
28 |
24 27
|
jccil |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
30 |
1 2
|
syl |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ On ) |
31 |
|
r1suc |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
32 |
31
|
eleq2d |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
33 |
30 32
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
34 |
|
rankr1ai |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) |
35 |
33 34
|
syl6bir |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) |
37 |
|
fvex |
⊢ ( rank ‘ 𝑥 ) ∈ V |
38 |
37
|
elsuc |
⊢ ( ( rank ‘ 𝑥 ) ∈ suc 𝐴 ↔ ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
39 |
36 38
|
sylib |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
40 |
39
|
orcomd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
41 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
42 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
44 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) ) |
45 |
41 43 44
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) |
46 |
|
rankcf |
⊢ ¬ 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) |
47 |
|
fveq2 |
⊢ ( ( rank ‘ 𝑥 ) = 𝐴 → ( cf ‘ ( rank ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) ) |
48 |
|
elina |
⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) |
49 |
48
|
simp2bi |
⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
50 |
47 49
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( cf ‘ ( rank ‘ 𝑥 ) ) = 𝐴 ) |
51 |
50
|
breq2d |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) ↔ 𝑥 ≺ 𝐴 ) ) |
52 |
46 51
|
mtbii |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ 𝐴 ) |
53 |
|
inar1 |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
54 |
|
sdomentr |
⊢ ( ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
55 |
54
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
56 |
53 55
|
syl |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
58 |
52 57
|
mtod |
⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
59 |
58
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
60 |
|
bren2 |
⊢ ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
61 |
45 59 60
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
62 |
61
|
ex |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) ) |
63 |
|
r1elwf |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
64 |
33 63
|
syl6bir |
⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
65 |
64
|
imp |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
66 |
|
r1fnon |
⊢ 𝑅1 Fn On |
67 |
66
|
fndmi |
⊢ dom 𝑅1 = On |
68 |
30 67
|
eleqtrrdi |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1 ) |
69 |
68
|
adantr |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝑅1 ) |
70 |
|
rankr1ag |
⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
71 |
65 69 70
|
syl2anc |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
72 |
71
|
biimprd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
73 |
62 72
|
orim12d |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
74 |
40 73
|
mpd |
⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
75 |
74
|
ralrimiva |
⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
76 |
|
eltsk2g |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) ) |
77 |
41 76
|
ax-mp |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
78 |
29 75 77
|
sylanbrc |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |