| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 2 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
| 4 |
3
|
ineq2d |
⊢ ( 𝑥 = ∅ → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∅ ) ) |
| 5 |
|
in0 |
⊢ ( 𝑏 ∩ ∅ ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑏 ∩ ∪ 𝑥 ) = ∅ ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ∅ ) ) |
| 8 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = 0 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − 0 ) ) |
| 11 |
|
pweq |
⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅ ) |
| 12 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = { ∅ } ) |
| 14 |
13
|
sumeq1d |
⊢ ( 𝑥 = ∅ → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 15 |
10 14
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 17 |
|
unieq |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦 ) |
| 18 |
17
|
ineq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∪ 𝑦 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) ) |
| 21 |
|
pweq |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) |
| 22 |
21
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 25 |
|
unieq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 = ∪ ( 𝑦 ∪ { 𝑧 } ) ) |
| 26 |
|
uniun |
⊢ ∪ ( 𝑦 ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ ∪ { 𝑧 } ) |
| 27 |
|
unisnv |
⊢ ∪ { 𝑧 } = 𝑧 |
| 28 |
27
|
uneq2i |
⊢ ( ∪ 𝑦 ∪ ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ 𝑧 ) |
| 29 |
26 28
|
eqtri |
⊢ ∪ ( 𝑦 ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ 𝑧 ) |
| 30 |
25 29
|
eqtrdi |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 = ( ∪ 𝑦 ∪ 𝑧 ) ) |
| 31 |
30
|
ineq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) ) |
| 34 |
|
pweq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑥 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 35 |
34
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 36 |
33 35
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 37 |
36
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 38 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
| 39 |
38
|
ineq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∪ 𝐴 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) ) |
| 42 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
| 43 |
42
|
sumeq1d |
⊢ ( 𝑥 = 𝐴 → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 44 |
41 43
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 46 |
|
hashcl |
⊢ ( 𝑏 ∈ Fin → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
| 47 |
46
|
nn0cnd |
⊢ ( 𝑏 ∈ Fin → ( ♯ ‘ 𝑏 ) ∈ ℂ ) |
| 48 |
47
|
mullidd |
⊢ ( 𝑏 ∈ Fin → ( 1 · ( ♯ ‘ 𝑏 ) ) = ( ♯ ‘ 𝑏 ) ) |
| 49 |
|
0ex |
⊢ ∅ ∈ V |
| 50 |
48 47
|
eqeltrd |
⊢ ( 𝑏 ∈ Fin → ( 1 · ( ♯ ‘ 𝑏 ) ) ∈ ℂ ) |
| 51 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ∅ ) ) |
| 52 |
51 8
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = 0 ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( - 1 ↑ 0 ) ) |
| 54 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 55 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
| 56 |
54 55
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
| 57 |
53 56
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = 1 ) |
| 58 |
|
rint0 |
⊢ ( 𝑠 = ∅ → ( 𝑏 ∩ ∩ 𝑠 ) = 𝑏 ) |
| 59 |
58
|
fveq2d |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ 𝑏 ) ) |
| 60 |
57 59
|
oveq12d |
⊢ ( 𝑠 = ∅ → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
| 61 |
60
|
sumsn |
⊢ ( ( ∅ ∈ V ∧ ( 1 · ( ♯ ‘ 𝑏 ) ) ∈ ℂ ) → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
| 62 |
49 50 61
|
sylancr |
⊢ ( 𝑏 ∈ Fin → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
| 63 |
47
|
subid1d |
⊢ ( 𝑏 ∈ Fin → ( ( ♯ ‘ 𝑏 ) − 0 ) = ( ♯ ‘ 𝑏 ) ) |
| 64 |
48 62 63
|
3eqtr4rd |
⊢ ( 𝑏 ∈ Fin → ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 65 |
64
|
rgen |
⊢ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ 𝑥 ) ) |
| 67 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ∪ 𝑦 ) ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) |
| 69 |
66 68
|
oveq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) ) |
| 70 |
|
simpl |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑏 = 𝑥 ) |
| 71 |
70
|
ineq1d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ∩ 𝑠 ) ) |
| 72 |
71
|
fveq2d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) |
| 73 |
72
|
oveq2d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 74 |
73
|
sumeq2dv |
⊢ ( 𝑏 = 𝑥 → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 75 |
69 74
|
eqeq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
| 76 |
75
|
rspcva |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 77 |
76
|
adantll |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ Fin ) |
| 79 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑧 ) ⊆ 𝑥 |
| 80 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ 𝑧 ) ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑧 ) ∈ Fin ) |
| 81 |
78 79 80
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ 𝑧 ) ∈ Fin ) |
| 82 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) |
| 83 |
|
ineq1 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∪ 𝑦 ) = ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) ) |
| 84 |
|
in32 |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ 𝑧 ) |
| 85 |
|
inass |
⊢ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) |
| 86 |
84 85
|
eqtri |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) |
| 87 |
83 86
|
eqtrdi |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) |
| 88 |
87
|
fveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) |
| 89 |
82 88
|
oveq12d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) |
| 90 |
|
ineq1 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) ) |
| 91 |
|
in32 |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) = ( ( 𝑥 ∩ ∩ 𝑠 ) ∩ 𝑧 ) |
| 92 |
|
inass |
⊢ ( ( 𝑥 ∩ ∩ 𝑠 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) |
| 93 |
91 92
|
eqtri |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) |
| 94 |
90 93
|
eqtrdi |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 97 |
96
|
sumeq2sdv |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 98 |
89 97
|
eqeq12d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 99 |
98
|
rspcva |
⊢ ( ( ( 𝑥 ∩ 𝑧 ) ∈ Fin ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 100 |
81 99
|
sylan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 101 |
77 100
|
oveq12d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 102 |
|
inss1 |
⊢ ( 𝑥 ∩ ∪ 𝑦 ) ⊆ 𝑥 |
| 103 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ∪ 𝑦 ) ⊆ 𝑥 ) → ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ) |
| 104 |
78 102 103
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ) |
| 105 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℕ0 ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℕ0 ) |
| 107 |
106
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℂ ) |
| 108 |
|
hashcl |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℕ0 ) |
| 109 |
81 108
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℕ0 ) |
| 110 |
109
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℂ ) |
| 111 |
|
inss1 |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ⊆ 𝑥 |
| 112 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ⊆ 𝑥 ) → ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
| 113 |
78 111 112
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
| 114 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
| 115 |
113 114
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
| 116 |
115
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℂ ) |
| 117 |
|
hashun3 |
⊢ ( ( ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ∧ ( 𝑥 ∩ 𝑧 ) ∈ Fin ) → ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) ) |
| 118 |
104 81 117
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) ) |
| 119 |
|
indi |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) |
| 120 |
119
|
fveq2i |
⊢ ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
| 121 |
|
inindi |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) |
| 122 |
121
|
fveq2i |
⊢ ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) = ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) |
| 123 |
122
|
oveq2i |
⊢ ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) |
| 124 |
118 120 123
|
3eqtr4g |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) |
| 125 |
107 110 116 124
|
assraddsubd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) ) |
| 127 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 128 |
127
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 129 |
128
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ 𝑥 ) ∈ ℂ ) |
| 130 |
110 116
|
subcld |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
| 131 |
129 107 130
|
subsub4d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) ) |
| 132 |
126 131
|
eqtr4d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
| 134 |
|
disjdif |
⊢ ( 𝒫 𝑦 ∩ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = ∅ |
| 135 |
134
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝒫 𝑦 ∩ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = ∅ ) |
| 136 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 137 |
136
|
sspwi |
⊢ 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) |
| 138 |
|
undif |
⊢ ( 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 139 |
137 138
|
mpbi |
⊢ ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = 𝒫 ( 𝑦 ∪ { 𝑧 } ) |
| 140 |
139
|
eqcomi |
⊢ 𝒫 ( 𝑦 ∪ { 𝑧 } ) = ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
| 141 |
140
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 ( 𝑦 ∪ { 𝑧 } ) = ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) |
| 142 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝑦 ∈ Fin ) |
| 143 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 144 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 145 |
142 143 144
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 146 |
|
pwfi |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ↔ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 147 |
145 146
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 148 |
54
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → - 1 ∈ ℂ ) |
| 149 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) → 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 150 |
|
ssfi |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑠 ∈ Fin ) |
| 151 |
145 149 150
|
syl2an |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → 𝑠 ∈ Fin ) |
| 152 |
|
hashcl |
⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 153 |
151 152
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 154 |
148 153
|
expcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ∈ ℂ ) |
| 155 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → 𝑥 ∈ Fin ) |
| 156 |
|
inss1 |
⊢ ( 𝑥 ∩ ∩ 𝑠 ) ⊆ 𝑥 |
| 157 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ∩ 𝑠 ) ⊆ 𝑥 ) → ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin ) |
| 158 |
155 156 157
|
sylancl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin ) |
| 159 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
| 160 |
158 159
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
| 161 |
160
|
nn0cnd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℂ ) |
| 162 |
154 161
|
mulcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
| 163 |
135 141 147 162
|
fsumsplit |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) |
| 165 |
164
|
oveq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) ) |
| 166 |
|
inteq |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ∩ 𝑠 = ∩ ( 𝑡 ∪ { 𝑧 } ) ) |
| 167 |
|
vex |
⊢ 𝑧 ∈ V |
| 168 |
167
|
intunsn |
⊢ ∩ ( 𝑡 ∪ { 𝑧 } ) = ( ∩ 𝑡 ∩ 𝑧 ) |
| 169 |
166 168
|
eqtrdi |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ∩ 𝑠 = ( ∩ 𝑡 ∩ 𝑧 ) ) |
| 170 |
169
|
ineq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( 𝑥 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) |
| 171 |
170
|
fveq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) |
| 172 |
165 171
|
oveq12d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) ) |
| 173 |
|
pwfi |
⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) |
| 174 |
142 173
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 𝑦 ∈ Fin ) |
| 175 |
|
eqid |
⊢ ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) = ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) |
| 176 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝑦 → 𝑢 ⊆ 𝑦 ) |
| 177 |
176
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → 𝑢 ⊆ 𝑦 ) |
| 178 |
|
unss1 |
⊢ ( 𝑢 ⊆ 𝑦 → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 179 |
177 178
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 180 |
|
vex |
⊢ 𝑢 ∈ V |
| 181 |
|
vsnex |
⊢ { 𝑧 } ∈ V |
| 182 |
180 181
|
unex |
⊢ ( 𝑢 ∪ { 𝑧 } ) ∈ V |
| 183 |
182
|
elpw |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 184 |
179 183
|
sylibr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 185 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
| 186 |
|
elpwi |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 → ( 𝑢 ∪ { 𝑧 } ) ⊆ 𝑦 ) |
| 187 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) |
| 188 |
167
|
snss |
⊢ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) ) |
| 189 |
187 188
|
mpbir |
⊢ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) |
| 190 |
189
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ) |
| 191 |
|
ssel |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ⊆ 𝑦 → ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) → 𝑧 ∈ 𝑦 ) ) |
| 192 |
186 190 191
|
syl2imc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 193 |
185 192
|
mtod |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ¬ ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 ) |
| 194 |
184 193
|
eldifd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
| 195 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 196 |
195
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 197 |
196
|
elpwid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 198 |
|
uncom |
⊢ ( 𝑦 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑦 ) |
| 199 |
197 198
|
sseqtrdi |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) |
| 200 |
|
ssundif |
⊢ ( 𝑠 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 201 |
199 200
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 202 |
|
vex |
⊢ 𝑦 ∈ V |
| 203 |
202
|
elpw2 |
⊢ ( ( 𝑠 ∖ { 𝑧 } ) ∈ 𝒫 𝑦 ↔ ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 204 |
201 203
|
sylibr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( 𝑠 ∖ { 𝑧 } ) ∈ 𝒫 𝑦 ) |
| 205 |
|
elpwunsn |
⊢ ( 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) → 𝑧 ∈ 𝑠 ) |
| 206 |
205
|
ad2antll |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑧 ∈ 𝑠 ) |
| 207 |
206
|
snssd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → { 𝑧 } ⊆ 𝑠 ) |
| 208 |
|
ssequn2 |
⊢ ( { 𝑧 } ⊆ 𝑠 ↔ ( 𝑠 ∪ { 𝑧 } ) = 𝑠 ) |
| 209 |
207 208
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑠 ∪ { 𝑧 } ) = 𝑠 ) |
| 210 |
209
|
eqcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑠 = ( 𝑠 ∪ { 𝑧 } ) ) |
| 211 |
|
uneq1 |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑢 ∪ { 𝑧 } ) = ( ( 𝑠 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
| 212 |
|
undif1 |
⊢ ( ( 𝑠 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) |
| 213 |
211 212
|
eqtrdi |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑢 ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) ) |
| 214 |
213
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ↔ 𝑠 = ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 215 |
210 214
|
syl5ibrcom |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
| 216 |
176
|
ad2antrl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑢 ⊆ 𝑦 ) |
| 217 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 218 |
216 217
|
ssneldd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑢 ) |
| 219 |
|
difsnb |
⊢ ( ¬ 𝑧 ∈ 𝑢 ↔ ( 𝑢 ∖ { 𝑧 } ) = 𝑢 ) |
| 220 |
218 219
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 ∖ { 𝑧 } ) = 𝑢 ) |
| 221 |
220
|
eqcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑢 = ( 𝑢 ∖ { 𝑧 } ) ) |
| 222 |
|
difeq1 |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑠 ∖ { 𝑧 } ) = ( ( 𝑢 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) |
| 223 |
|
difun2 |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∖ { 𝑧 } ) = ( 𝑢 ∖ { 𝑧 } ) |
| 224 |
222 223
|
eqtrdi |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑠 ∖ { 𝑧 } ) = ( 𝑢 ∖ { 𝑧 } ) ) |
| 225 |
224
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ↔ 𝑢 = ( 𝑢 ∖ { 𝑧 } ) ) ) |
| 226 |
221 225
|
syl5ibrcom |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ) ) |
| 227 |
215 226
|
impbid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ↔ 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
| 228 |
175 194 204 227
|
f1o2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) : 𝒫 𝑦 –1-1-onto→ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
| 229 |
|
uneq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 ∪ { 𝑧 } ) = ( 𝑡 ∪ { 𝑧 } ) ) |
| 230 |
|
vex |
⊢ 𝑡 ∈ V |
| 231 |
230 181
|
unex |
⊢ ( 𝑡 ∪ { 𝑧 } ) ∈ V |
| 232 |
229 175 231
|
fvmpt |
⊢ ( 𝑡 ∈ 𝒫 𝑦 → ( ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) ‘ 𝑡 ) = ( 𝑡 ∪ { 𝑧 } ) ) |
| 233 |
232
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑡 ∈ 𝒫 𝑦 ) → ( ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) ‘ 𝑡 ) = ( 𝑡 ∪ { 𝑧 } ) ) |
| 234 |
195 162
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
| 235 |
172 174 228 233 234
|
fsumf1o |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) ) |
| 236 |
|
uneq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) ) |
| 237 |
236
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) = ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 238 |
237
|
oveq2d |
⊢ ( 𝑡 = 𝑠 → ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) ) |
| 239 |
|
inteq |
⊢ ( 𝑡 = 𝑠 → ∩ 𝑡 = ∩ 𝑠 ) |
| 240 |
239
|
ineq1d |
⊢ ( 𝑡 = 𝑠 → ( ∩ 𝑡 ∩ 𝑧 ) = ( ∩ 𝑠 ∩ 𝑧 ) ) |
| 241 |
240
|
ineq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) |
| 242 |
241
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
| 243 |
238 242
|
oveq12d |
⊢ ( 𝑡 = 𝑠 → ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 244 |
243
|
cbvsumv |
⊢ Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
| 245 |
54
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → - 1 ∈ ℂ ) |
| 246 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑦 → 𝑠 ⊆ 𝑦 ) |
| 247 |
|
ssfi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑠 ⊆ 𝑦 ) → 𝑠 ∈ Fin ) |
| 248 |
142 246 247
|
syl2an |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ∈ Fin ) |
| 249 |
248 152
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 250 |
245 249
|
expp1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) + 1 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · - 1 ) ) |
| 251 |
246
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ⊆ 𝑦 ) |
| 252 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
| 253 |
251 252
|
ssneldd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑠 ) |
| 254 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) ) |
| 255 |
254
|
elv |
⊢ ( ( 𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) |
| 256 |
248 253 255
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) |
| 257 |
256
|
oveq2d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) + 1 ) ) ) |
| 258 |
137
|
sseli |
⊢ ( 𝑠 ∈ 𝒫 𝑦 → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 259 |
258 154
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ∈ ℂ ) |
| 260 |
245 259
|
mulcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · - 1 ) ) |
| 261 |
250 257 260
|
3eqtr4d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) ) |
| 262 |
259
|
mulm1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) = - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) |
| 263 |
261 262
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) |
| 264 |
263
|
oveq1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = ( - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 265 |
|
inss1 |
⊢ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ⊆ 𝑥 |
| 266 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ⊆ 𝑥 ) → ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin ) |
| 267 |
155 265 266
|
sylancl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin ) |
| 268 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
| 269 |
267 268
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
| 270 |
269
|
nn0cnd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℂ ) |
| 271 |
258 270
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℂ ) |
| 272 |
259 271
|
mulneg1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 273 |
264 272
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 274 |
273
|
sumeq2dv |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 275 |
244 274
|
eqtrid |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 276 |
154 270
|
mulcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
| 277 |
258 276
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
| 278 |
174 277
|
fsumneg |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 279 |
235 275 278
|
3eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
| 280 |
279
|
oveq2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 281 |
137
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 282 |
281
|
sselda |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 283 |
282 162
|
syldan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
| 284 |
174 283
|
fsumcl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
| 285 |
282 276
|
syldan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
| 286 |
174 285
|
fsumcl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
| 287 |
284 286
|
negsubd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 288 |
163 280 287
|
3eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 289 |
288
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
| 290 |
101 133 289
|
3eqtr4d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 291 |
290
|
ex |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
| 292 |
291
|
ralrimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ∀ 𝑥 ∈ Fin ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
| 293 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) = ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) |
| 294 |
293
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) |
| 295 |
66 294
|
oveq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) ) |
| 296 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ∩ 𝑠 ) ) |
| 297 |
296
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) |
| 298 |
297
|
oveq2d |
⊢ ( 𝑏 = 𝑥 → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 299 |
298
|
sumeq2sdv |
⊢ ( 𝑏 = 𝑥 → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 300 |
295 299
|
eqeq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
| 301 |
300
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑥 ∈ Fin ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
| 302 |
292 301
|
imbitrrdi |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
| 303 |
16 24 37 45 65 302
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
| 304 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ 𝐵 ) ) |
| 305 |
|
ineq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∩ ∪ 𝐴 ) = ( 𝐵 ∩ ∪ 𝐴 ) ) |
| 306 |
305
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) = ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) |
| 307 |
304 306
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) ) |
| 308 |
|
simpl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → 𝑏 = 𝐵 ) |
| 309 |
308
|
ineq1d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝐵 ∩ ∩ 𝑠 ) ) |
| 310 |
309
|
fveq2d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) |
| 311 |
310
|
oveq2d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
| 312 |
311
|
sumeq2dv |
⊢ ( 𝑏 = 𝐵 → Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
| 313 |
307 312
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) ) |
| 314 |
313
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
| 315 |
303 314
|
sylan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |