Step |
Hyp |
Ref |
Expression |
1 |
|
incistruhgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
incistruhgr.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
rabeq |
⊢ ( 𝑉 = 𝑃 → { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } = { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) |
4 |
3
|
mpteq2dv |
⊢ ( 𝑉 = 𝑃 → ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑉 = 𝑃 → ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ↔ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) ) |
6 |
|
xpeq1 |
⊢ ( 𝑉 = 𝑃 → ( 𝑉 × 𝐿 ) = ( 𝑃 × 𝐿 ) ) |
7 |
6
|
sseq2d |
⊢ ( 𝑉 = 𝑃 → ( 𝐼 ⊆ ( 𝑉 × 𝐿 ) ↔ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ) ) |
8 |
7
|
3anbi2d |
⊢ ( 𝑉 = 𝑃 → ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ↔ ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ) ) |
9 |
5 8
|
anbi12d |
⊢ ( 𝑉 = 𝑃 → ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ) ↔ ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ∧ ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ) ) ) |
10 |
|
dmeq |
⊢ ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) → dom 𝐸 = dom ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ) |
11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
12 |
11
|
rabex |
⊢ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ V |
13 |
|
eqid |
⊢ ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) |
14 |
12 13
|
dmmpti |
⊢ dom ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) = 𝐿 |
15 |
10 14
|
eqtrdi |
⊢ ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) → dom 𝐸 = 𝐿 ) |
16 |
|
ssrab2 |
⊢ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ⊆ 𝑉 |
17 |
16
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ⊆ 𝑉 ) |
18 |
12
|
elpw |
⊢ ( { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ 𝒫 𝑉 ↔ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ⊆ 𝑉 ) |
19 |
17 18
|
sylibr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ 𝒫 𝑉 ) |
20 |
|
eleq2 |
⊢ ( ran 𝐼 = 𝐿 → ( 𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿 ) ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( 𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿 ) ) |
22 |
|
ssrelrn |
⊢ ( ( 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ 𝑒 ∈ ran 𝐼 ) → ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) |
23 |
22
|
ex |
⊢ ( 𝐼 ⊆ ( 𝑉 × 𝐿 ) → ( 𝑒 ∈ ran 𝐼 → ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( 𝑒 ∈ ran 𝐼 → ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) ) |
25 |
21 24
|
sylbird |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( 𝑒 ∈ 𝐿 → ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) |
27 |
|
df-ne |
⊢ ( { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ≠ ∅ ↔ ¬ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } = ∅ ) |
28 |
|
rabn0 |
⊢ ( { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) |
29 |
27 28
|
bitr3i |
⊢ ( ¬ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } = ∅ ↔ ∃ 𝑣 ∈ 𝑉 𝑣 𝐼 𝑒 ) |
30 |
26 29
|
sylibr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → ¬ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } = ∅ ) |
31 |
12
|
elsn |
⊢ ( { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ { ∅ } ↔ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } = ∅ ) |
32 |
30 31
|
sylnibr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → ¬ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ { ∅ } ) |
33 |
19 32
|
eldifd |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ 𝑒 ∈ 𝐿 ) → { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
34 |
33
|
fmpttd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) : 𝐿 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
35 |
|
simpl |
⊢ ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ dom 𝐸 = 𝐿 ) → 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ) |
36 |
|
simpr |
⊢ ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ dom 𝐸 = 𝐿 ) → dom 𝐸 = 𝐿 ) |
37 |
35 36
|
feq12d |
⊢ ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ dom 𝐸 = 𝐿 ) → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) : 𝐿 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
38 |
34 37
|
syl5ibr |
⊢ ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ dom 𝐸 = 𝐿 ) → ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
39 |
15 38
|
mpdan |
⊢ ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) → ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
40 |
39
|
imp |
⊢ ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑉 ∣ 𝑣 𝐼 𝑒 } ) ∧ ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑉 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
41 |
9 40
|
syl6bir |
⊢ ( 𝑉 = 𝑃 → ( ( 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ∧ ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
42 |
41
|
expdimp |
⊢ ( ( 𝑉 = 𝑃 ∧ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) → ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
43 |
42
|
impcom |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ ( 𝑉 = 𝑃 ∧ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) ) → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
44 |
1 2
|
isuhgr |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
45 |
44
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ ( 𝑉 = 𝑃 ∧ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
47 |
43 46
|
mpbird |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) ∧ ( 𝑉 = 𝑃 ∧ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) ) → 𝐺 ∈ UHGraph ) |
48 |
47
|
ex |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ ( 𝑃 × 𝐿 ) ∧ ran 𝐼 = 𝐿 ) → ( ( 𝑉 = 𝑃 ∧ 𝐸 = ( 𝑒 ∈ 𝐿 ↦ { 𝑣 ∈ 𝑃 ∣ 𝑣 𝐼 𝑒 } ) ) → 𝐺 ∈ UHGraph ) ) |