Description: Obsolete version of incom as of 12-Dec-2023. Commutative law for intersection of classes. Exercise 7 of TakeutiZaring p. 17. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | incomOLD | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
2 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
3 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ∈ ( 𝐵 ∩ 𝐴 ) ) |
5 | 4 | eqriv | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |