Metamath Proof Explorer


Theorem ind1

Description: Value of the indicator function where it is 1 . (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Assertion ind1 ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = 1 )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → 𝐴𝑂 )
2 simp3 ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → 𝑋𝐴 )
3 1 2 sseldd ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → 𝑋𝑂 )
4 indfval ( ( 𝑂𝑉𝐴𝑂𝑋𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = if ( 𝑋𝐴 , 1 , 0 ) )
5 3 4 syld3an3 ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = if ( 𝑋𝐴 , 1 , 0 ) )
6 iftrue ( 𝑋𝐴 → if ( 𝑋𝐴 , 1 , 0 ) = 1 )
7 6 3ad2ant3 ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → if ( 𝑋𝐴 , 1 , 0 ) = 1 )
8 5 7 eqtrd ( ( 𝑂𝑉𝐴𝑂𝑋𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = 1 )