Step |
Hyp |
Ref |
Expression |
1 |
|
indfval |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , 1 , 0 ) ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = 1 ↔ if ( 𝑋 ∈ 𝐴 , 1 , 0 ) = 1 ) ) |
3 |
|
eqid |
⊢ 1 = 1 |
4 |
3
|
biantru |
⊢ ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ) |
5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
6 |
5
|
neii |
⊢ ¬ 1 = 0 |
7 |
6
|
biorfi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ∨ 1 = 0 ) ) |
8 |
6
|
bianfi |
⊢ ( 1 = 0 ↔ ( ¬ 𝑋 ∈ 𝐴 ∧ 1 = 0 ) ) |
9 |
8
|
orbi2i |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ∨ 1 = 0 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ∨ ( ¬ 𝑋 ∈ 𝐴 ∧ 1 = 0 ) ) ) |
10 |
4 7 9
|
3bitri |
⊢ ( 𝑋 ∈ 𝐴 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ∨ ( ¬ 𝑋 ∈ 𝐴 ∧ 1 = 0 ) ) ) |
11 |
|
eqif |
⊢ ( 1 = if ( 𝑋 ∈ 𝐴 , 1 , 0 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 1 = 1 ) ∨ ( ¬ 𝑋 ∈ 𝐴 ∧ 1 = 0 ) ) ) |
12 |
|
eqcom |
⊢ ( 1 = if ( 𝑋 ∈ 𝐴 , 1 , 0 ) ↔ if ( 𝑋 ∈ 𝐴 , 1 , 0 ) = 1 ) |
13 |
10 11 12
|
3bitr2ri |
⊢ ( if ( 𝑋 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 𝑋 ∈ 𝐴 ) |
14 |
2 13
|
bitrdi |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = 1 ↔ 𝑋 ∈ 𝐴 ) ) |